Search results for: plant raw materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9813

Search results for: plant raw materials

5583 If the Architecture Is in Harmony With Its Surrounding, It Reconnects People With Nature

Authors: Aboubakr Mashali

Abstract:

Context: The paper focuses on the relationship between architecture and nature, emphasizing the importance of incorporating natural elements in design to reconnect individuals with the natural environment. It highlights the positive impact of a harmonious architecture on people's well-being and the environment, as well as the concept of sustainable architecture. Research aim: The aim of this research is to showcase how nature can be integrated into architectural designs, ultimately reestablishing a connection between humans and the natural world. Methodology: The research employs an in-depth approach, delving into the subject matter through extensive research and the analysis of case studies. These case studies provide practical examples and insights into successful architectural designs that have effectively incorporated nature. Findings: The findings suggest that when architecture and nature coexist harmoniously, it creates a positive atmosphere and enhances people's wellbeing. The use of materials obtained from nature in their raw or minimally refined form, such as wood, clay, stone, and bamboo, contributes to a natural atmosphere within the built environment. Additionally, a color palette inspired by nature, consisting of earthy tones, green, brown, and rusty shades, further enhances the harmonious relationship between individuals and their surroundings. The paper also discusses the concept of sustainable architecture, where materials used are renewable, and energy consumption is minimal. It acknowledges the efforts of organizations such as the US Green Building Council in promoting sustainable design practices. Theoretical importance: This research contributes to the understanding of the relationship between architecture and nature and highlights the importance of incorporating natural elements into design. It emphasizes the potential of naturefriendly architecture to create greener, resilient, and sustainable cities. Data collection and analysis procedures: The researcher gathered data through comprehensive research, examining existing literature, and studying relevant case studies. The analysis involved studying the successful implementation of nature in architectural design and its impact on individuals and the environment. Question addressed: The research addresses the question of how nature can be incorporated into architectural designs to reconnect humans with the nature. Conclusion: In conclusion, this research highlights the significance of architecture being in harmony with its surrounding, which in turn should be in harmony with nature. By incorporating nature in architectural designs, individuals can rediscover their connection with nature and experience its positive impact on their well-being. The use of natural materials and a color palette inspired by nature further enhances this relationship. Additionally, embracing sustainable design practices contributes to the creation of greener and more resilient cities. This research underscores the importance of integrating nature-friendly architecture to foster a healthier and more sustainable future.

Keywords: nature, architecture, reconnecting, greencities, sustainable, openspaces, landscape

Procedia PDF Downloads 52
5582 Experimental Evaluation of Stand Alone Solar Driven Membrane Distillation System

Authors: Mejbri Sami, Zhani Khalifa, Zarzoum Kamel, Ben Bacha Habib, Koschikowski Joachim, Pfeifle Daniel

Abstract:

Many places worldwide, especially arid and semi-arid remote regions, are suffering from the lack of drinkable water and the situation will be aggravated in the near future. Furthermore, remote areas are characterised by lack of conventional energy sources, skilled personnel and maintenance facilities. Therefore, the development of small to medium size, stand-alone and robust solar desalination systems is needed to provide independent fresh water supply in remote areas. This paper is focused on experimental studies on compact membrane distillation (MD) solar desalination prototype located at the Mechanical Engineering Department site, Kairouan University, Kairouan, Tunisia. The pilot system is designed and manufactured as a part of a research and development project funded by the MESRS/BMBF. The pilot system is totally autonomous. The electrical energy required to operate the unit is generated through a field of 4 m² of photovoltaic panels, and the heating of feed water is provided by a field of 6 m² of solar collectors. The Kairouan plant performance of the first few months of operation is presented. The highest freshwater production of 150 L/d is obtained on a sunny day in July of 633 W/m²d.

Keywords: experimental, membrane distillation, solar desalination, Permeat gap

Procedia PDF Downloads 117
5581 Role of Fish Hepatic Aldehyde Oxidase in Oxidative In Vitro Metabolism of Phenanthridine Heterocyclic Aromatic Compound

Authors: Khaled S. Al Salhen

Abstract:

Aldehyde oxidase is molybdo-flavoenzyme involved in the oxidation of hundreds of endogenous and exogenous and N-heterocyclic compounds and environmental pollutants. Uncharged N-heterocyclic aromatic compounds such phenanthridine are commonly distributed pollutants in soil, air, sediments, surface water and groundwater, and in animal and plant tissues. Phenanthridine as uncharged N-heterocyclic aromatic compound was incubated with partially purified aldehyde oxidase from rainbow trout fish liver. Reversed-phase HLPC method was used to separate the oxidation products from phenanthridine and the metabolite was identified. The 6(5H)-phenanthridinone was identified the major metabolite by partially purified aldehyde oxidase from fish liver. Kinetic constant for the oxidation reactions were determined spectrophotometrically and showed that this substrate has a good affinity (Km = 78 ± 7.6 µM) for hepatic aldehyde oxidase, coupled with a relatively high oxidation rate (0.77± 0.03 nmol/min/mg protein). In addition, the kinetic parameters of hepatic fish aldehyde oxidase towards the phenanthridine substrate indicate that in vitro biotransformation by hepatic fish aldehyde oxidase will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase.

Keywords: aldehyde oxidase, fish, phenanthridine, specificity

Procedia PDF Downloads 347
5580 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 468
5579 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 109
5578 Saving Energy through Scalable Architecture

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.

Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change

Procedia PDF Downloads 68
5577 Assessing the Impacts of Frugivorous Birds on Dispersal and Recruitment of Invasive Phytolacca Americana in an Urban Landscape

Authors: Ning Li, Yaner Yan, Yajun Qiao, Shu-qing An

Abstract:

Although seed dispersal is considered to be a key process determining the spatial structure and spread of invasive plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, and seedling recruitment to gain insight into the process of exotic species invasion within a urban landscape. The present study tests the effects of native bird species on the dispersal and recruitment of invasive Phytolacca Americana in an urban garden. We found the invasive population of American pokeweed attracted both generalist species and specialist species to forage and disperse its seeds, with generalists Pycnonotus sinensis and Urocissa erythrorhyncha being by far the most important dispersers. Seedling numbers of P. Americana was strongly affected by perching behavior of bird dispersers. Moreover, two main disperser species, P. sinensis and U. erythrorhyncha govern a high quality dispersal service for P. Americana. Our results highlight the ability of invasive P. americana to recruit seed dispersal agents in urban habitats. However, if the newly recruited species could use the seedling safe site for perching shelter, the invasive plants will get a high regenerate rate in the invasive new habitats thus enhancing their invasive ability.

Keywords: frugivorous birds, phytolacca americana, seed dispersal, urban landscape

Procedia PDF Downloads 526
5576 Application of the Mobile Phone for Occupational Self-Inspection Program in Small-Scale Industries

Authors: Jia-Sin Li, Ying-Fang Wang, Cheing-Tong Yan

Abstract:

In this study, an integrated approach of Google Spreadsheet and QR code which is free internet resources was used to improve the inspection procedure. The mobile phone Application(App)was also designed to combine with a web page to create an automatic checklist in order to provide a new integrated information of inspection management system. By means of client-server model, the client App is developed for Android mobile OS and the back end is a web server. It can set up App accounts including authorized data and store some checklist documents in the website. The checklist document URL could generate QR code first and then print and paste on the machine. The user can scan the QR code by the app and filled the checklist in the factory. In the meanwhile, the checklist data will send to the server, it not only save the filled data but also executes the related functions and charts. On the other hand, it also enables auditors and supervisors to facilitate the prevention and response to hazards, as well as immediate report data checks. Finally, statistics and professional analysis are performed using inspection records and other relevant data to not only improve the reliability, integrity of inspection operations and equipment loss control, but also increase plant safety and personnel performance. Therefore, it suggested that the traditional paper-based inspection method could be replaced by the APP which promotes the promotion of industrial security and reduces human error.

Keywords: checklist, Google spreadsheet, APP, self-inspection

Procedia PDF Downloads 99
5575 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 83
5574 Patriotic Education through Private/Everyday Narratives: What We Can Learn from Young People

Authors: Yijie Wang, Hanwei Cheng

Abstract:

Under the Chinese educational context, the materials for patriotic education typically take the form of grand narratives. However, in post-modern times the younger members of society tend to welcome elements of more micro and personal nature. It is therefore important to explore how patriotism can be integrated into an ‘everyday’, private narrative that holds more attraction for the young. Based on semi-structured interviews of eight Chinese graduate students, this research examines how Chinese young people draw materials to establish national identity and develop love for the country from everyday-life details, as well as how they perceive, interpret and articulate their patriotism through private narratives. And implications for patriotic education are proposed accordingly. Several conclusions are drawn from the pre-interviews. Firstly, sensory experiences that remind people of their country—such as the taste of Chinese delicacies and the sound of a traditional instrument—are a major source of patriotic feelings. Secondly, the love for the country often stems from and is continued to be mediated by the emotional attachment with other people, typically significant others, and patriotism is articulated (or acknowledged) by the young as a kind of ‘sentiment’ rather than ‘faith’ or ‘belief’. Thirdly, for young people who are currently studying abroad, their birth country represents a kind of familiar, well-accustomed life or lifestyle, and any nostalgic realization of it leads to increased national belonging and sense of identity. Fourthly, the awareness of the country’s transformations—positive ones and neutral ones alike—triggers young people affections towards the country, and even negative transformations may result in promoted sense of self-involvement and therefore consolidate national identity. Implications for patriotic education can be drawn accordingly, and although the research is conducted under the Chinese context, it will hopefully contribute to the understanding of relevant fields.

Keywords: national identity, patriotic education, private narrative, young people

Procedia PDF Downloads 171
5573 Seasonal Variation in Free Radical Scavenging Properties of Indian Moringa (Moringa Oleifera)

Authors: Awadhesh Kishore, Tushar Sharma

Abstract:

The goal of this study was to compare the free radical-scavenging (FRS) characteristics of four Indian moringa (Moringa oleifera) plant components: flowers, tender and mature leaves, and seeds that were collected from three Indian districts: Jaipur, Dehra Dun, and Gwalior; in every month of 2021–2022. The samples were collected from three randomly selected agroforest locations from each district. The samples were extracted, and antioxidant properties were determined following the DPPH method with minor modifications. The FRS properties were calculated as the non-absorbance values of the sample in percentage. The factorial ANOVA statistical analysis technique was implemented for comparing FRS properties, and an MS Office Excel 2016 analysis pack was used to compare data. The flowers from Dehra Dun had superior FRS properties (27.06±1.03%), while the seeds from the same location were inferior (8.64±0.17%). The FRS properties of flowers (26.27±0.61%) were not statistically different (P > 0.05) compared to those of tender (27.30±0.63%) and mature leaves (28.37±0.59%), but significantly higher (P < 0.05) than those of seeds (9.31±0.16%). However, the FRS properties in Indian moringa were significantly higher during the winter (Jan 28.67±1.48%) compared to that in the summer (Jun 14.03±0.79%) season, but collected from three locations, viz. Gwalior (22.35±0.70%), Jaipur (23.06±0.73%), and Dehra Dun (23.10±0.76%), were not significantly different (P > 0.05). Based on this study, it can be concluded that the FRS value of flowers during the winter season is superior.

Keywords: flowers, free radical-scavenging, leaves, moringa oleifera, seeds

Procedia PDF Downloads 52
5572 Developing Students’ Academic Writing Skills through Scientific Reading: Using Questions and Answer Activities

Authors: Makhim Artikova, Shavkat Duschanov

Abstract:

So far, there have been a plethora of attempts to improve learners’ academic writing skills. However, this issue remains to be a real concern among the majority of students, especially those who are standing on their academic life threshold. The purpose of this research is improving students’ academic writing skills through 'Questions and Answer Reading' activities. Using well-prepared and well-chosen reading materials (from textbooks, scientific journals, or magazines) and applying questions and answer activities in the classroom facilitate learners to become great critical readers. Furthermore, it boosts their writing skills, which are the most crucial part of students’ personal and academic developments. In this activity, the class is divided into small groups of four. Then, the instructor will give students whether one section of the text or full text asking them to read and to find unfamiliar words within the group. After discovering the meaning of unknown words, each group has to share their findings with the class. In the next stage of the activity, students should be asked to create questions in a group based on the given reading material. Follow by each group should ask the other groups their questions which are an excellent opportunity to challenge leads to improve critical thinking skills. In the last part, the students are asked to write the text or article summary, which is the activity core that pilots to the writing skills perfection. This engaging activity highlights the effectiveness of incorporating reading materials into the classroom when it comes to improving students’ composition writings. Structural writing after every reading activity resulted in improving students’ coherence and cohesion in writing well-organized essays. Having experimented with high school 9th and 11th-grade students, implementing reading activities into the classroom is proved to be a productive tool to enhance one’s academic writing skills. In the future, this method planning to be implemented among university students.

Keywords: academic writing, coherence and cohesion, questions and answer activities, scientific reading

Procedia PDF Downloads 99
5571 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 129
5570 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic

Authors: Biswajit Pal, Amit Mallik, Anil K. Barik

Abstract:

Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.

Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization

Procedia PDF Downloads 173
5569 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture

Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy

Abstract:

Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.

Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin

Procedia PDF Downloads 220
5568 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 108
5567 Infrared Detection Device for Accurate Scanning 3D Objects

Authors: Evgeny A. Rybakov, Dmitry P. Starikov

Abstract:

This article contains information about creating special unit for scanning 3D objects different nature, different materials, for example plastic, plaster, cardboard, wood, metal and etc. The main part of the unit is infrared transducer, which is sends the wave to the object and receive back wave for calculating distance. After that, microcontroller send to PC data, and computer program create model for printing from the plastic, gypsum, brass, etc.

Keywords: clutch, infrared, microcontroller, plastic, shaft, stage

Procedia PDF Downloads 427
5566 Enhanced Growth and Innate Immune Response in Scylla serrata Fed Additives Containing Citrus microcarpa and Euphorbia hirta

Authors: Kaye Angelica Lacurom, Keziah Macahilo

Abstract:

One of the most important and in demand products in the Philippines is Scylla serrata. Despite the increasing demand in the market today, the cost of feeds corresponds to a fraction of 40%-50% of the entire operational of crab production. Raisers and suppliers are seeking alternative ways to lessen their expense with more effective enhancers than the usual feeds. This study aimed to enhance the growth and immune system of the mud crabs using natural antioxidants from plant powders that are available in the locality. There were four treatments: Diet 1: commercially available feeds for the positive control, Diet 2: 1,200 mg/kg Euphorbia hirta , Diet 3: 1,600 mg/kg of Citrus microcarpa, Diet 4: Mixed 1,400 of Euphorbia hirta and Citrus microcarpa. Air-drying was done first-hand followed by the grinding of plants. After which the plants were stored in a container and was added to the feed formulation given. Mud crabs were fed twice a day for 30 days for better results. For inferential analysis, weight gain and survivability were measured, hemolymph was extracted and the Total Hemocycte Count (THC) was determined analyzed. Results showed that the highest THC mean (9.0 x 105 ± 7.1 x 104) and weight gain mean (2.9 x 10± 1.9 x 10) was achieved by Diet 3 with the same survivability rates among other treatments and positive control. While Diet 2 presented the lowest THC mean (7.2 x 105 ±3.5 x 104) and weight gain mean (1.0 x 10± 7.0 x 10-1).

Keywords: fed additives, Scylla serrata, enhanced growth, innate immune response

Procedia PDF Downloads 123
5565 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications

Authors: Maria Bercea, Monica Diana Olteanu

Abstract:

Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.

Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications

Procedia PDF Downloads 331
5564 Soil Compaction by a Forwarder in Timber Harvesting

Authors: Juang R. Matangaran, Erianto I. Putra, Iis Diatin, Muhammad Mujahid, Qi Adlan

Abstract:

Industrial plantation forest is the producer of logs in Indonesia. Several companies of industrial plantation forest have been successfully planted with fast-growing species, and it entered their annual harvesting period. Heavy machines such as forwarders are used in timber harvesting to extract logs from stump to landing site. The negative impact of using such machines are loss of topsoil and soil compaction. Compacted soil is considered unfavorable for plant growth. The research objectives were to analyze the soil bulk density, rut, and cone index of the soil caused by a forwarder passes, to analyze the relation between several times of forwarder passes to the increase of soil bulk density. A Valmet forwarder was used in this research. Soil bulk density at soil surface and cone index from the soil surface to the 50 cm depth of soil were measured at the harvested area. The result showed that soil bulk density increase with the increase of the Valmet forwarder passes. Maximum soil bulk density occurred after 5 times forwarder Valmet passed. The cone index tended to increase from the surface until 50 cm depth of soil. Rut formed and high soil bulk density indicated the soil compaction occurred by the forwarder operation.

Keywords: bulk density, forwarder Valmet, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 125
5563 In vivo Anti-inflammatory, Analgesic, and Antipyretic Activities of Aqueous Extract of Leaves of Brocchia cinerea (Vis.)

Authors: Nisrine Chlif, Mohammed Diouri, Amar Bentayeb

Abstract:

Background: The Leaves of Brocchia cinerea (Vis.) (Asteraceae) is used traditionally and ethnomedicinally to alleviate pain, fever, and inflammation conditions. Objective: The current study investigates the anti-inflammatory, analgesic, and antipyretic activities of aqueous extract of the leaves of Brocchia cinerea (LBC). Material and methods: The extract was screened for anti-inflammatory (carrageenan-induced paw edema) and analgesic (acetic acid-induced writhing) activities in Wistar rats. Before acetic acid or carrageenan injection, rats were orally fed LBC (200 and 400 mg/ kg), Indomethacin (10 mg/kg), or Aspirin (100 mg/kg). The antipyretic effect was studied in brewer’s yeast-induced pyrexia model in rats using Paracetamol (100 mg/kg) as a standard drug. Results: The crude extract tested significantly prevented the increase in paw volume as compared to the control at 200 mg/kg and 400 mg/kg. The LBC treatment significantly inhibited pain at 400 mg/kg with a percent inhibition of 55.82%, as well as showing a significant reduction in hyperpyrexia in rats at 400 mg/kg. LBC extract produced a comparable activity to paracetamol at 100 mg/kg (p <0.01). Conclusion: The results of the present study that the leaves of B. cinerea extract exhibited strongly anti-inflammatory, analgesic, and antipyretic properties and justify the traditional use of this plant in inflammation, pain, and fever.

Keywords: analgesic, anti-inflammation, antipyretic, brocchia cinerea

Procedia PDF Downloads 140
5562 Is there Anything Useful in That? High Value Product Extraction from Artemisia annua L. in the Spent Leaf and Waste Streams

Authors: Anike Akinrinlade

Abstract:

The world population is estimated to grow from 7.1 billion to 9.22 billion by 2075, increasing therefore by 23% from the current global population. Much of the demographic changes up to 2075 will take place in the less developed regions. There are currently 54 countries which fall under the bracket of being defined as having ‘low-middle income’ economies and need new ways to generate valuable products from current resources that is available. Artemisia annua L is well used for the extraction of the phytochemical artemisinin, which accounts for around 0.01 to 1.4 % dry weight of the plant. Artemisinin is used in the treatment of malaria, a disease rampart in sub-Saharan Africa and in many other countries. Once artemisinin has been extracted the spent leaf and waste streams are disposed of as waste. A feasibility study was carried out looking at increasing the biomass value of A. annua, by designing a biorefinery where spent leaf and waste streams are utilized for high product generation. Quercetin, ferulic acid, dihydroartemisinic acid, artemisinic acid and artemsinin were screened for in the waste stream samples and the spent leaf. The analytical results showed that artemisinin, artemisinic acid and dihydroartemisinic acid were present in the waste extracts as well as camphor and arteannuin b. Ongoing effects are looking at using more industrially relevant solvents to extract the phytochemicals from the waste fractions and investigate how microwave pyrolysis of spent leaf can be utilized to generate bio-products.

Keywords: high value product generation, bioinformatics, biomedicine, waste streams, spent leaf

Procedia PDF Downloads 327
5561 Effects of Hypoxic Duration at Different Growth Stages on Yield Potential of Waxy Corn (Zea mays L.)

Authors: S. Boonlertnirun, R. Suvannasara, K. Boonlertnirun

Abstract:

Hypoxia has negative effects on growth and crop yield, its severity is so varied depending on crop growth stages, duration of hypoxia and crop species. The objective was to evaluate the sensitive growth stage and the duration of hypoxia negatively affecting growth and yield of waxy corn. Pot experiment was conducted using a split plot in randomized complete block with 3 growth stages: V3 (3-4 true leaves), V7 (7-8 true leaves), and R1 (silking stage), and three hypoxic durations: 6, 9, and 12 days, in an open–ended outdoor greenhouse during January to March 2013. The results revealed that different growth stages had significantly (p < 0.5) different responses to hypoxia, seeing that the sensitive growth stage affecting plant height, yield and yield components was mostly detected in V7 growth stage whereas leaf greenness and days to silking were sensitive to hypoxia at R1 growth stage. Different hypoxic durations significantly affected the yield and yield components, hypoxic duration of twelve days showed the most negative effect greater than the others. In this present study, it can be concluded that waxy corn plants were waterlogged at V7 growth stage for twelve days had the most negative effect on yield and yield components.

Keywords: hypoxia duration, waxy corn, growth stage, Zea mays L.

Procedia PDF Downloads 371
5560 Antioxidant Activity, Total Phenolic Contents, and Functional Group Identification of Leaf Extracts among Lemongrass (Cymbopogon citratus) Accessions

Authors: Oyenike A. Adeyemo, Elizabeth Osibote, Adeyemi Adedugba, Olatunde A. Bhadmus, Adeoluwa A. Adeoshun, Mariam O. Allison

Abstract:

Lemongrass leaves are widely used for tea and the treatment of malaria. The present study used Soxhlet extraction with aqueous ethanol (v/v). Fresh and dried leaves of selected ten lemongrasses (Cymbopogon citratus) accessions from different geographical regions in Nigeria were examined for total phenolic contents, and antioxidant activities. Aqueous methanol extraction was carried out and further partitioned into hexane, ethyl acetate, and butanol to obtain fractions according to their polarities. Fourier Transform Infrared Spectroscopy (FTIR) was carried out to identify the functional groups that may be present. Among the ten accessions, the leaf extracts at five different concentrations exhibited increasing antioxidant activities using DPPH (2,2-diphenyl- 1- picrylhydrazyl) radical scavenging test, stronger activities for dried leaves (71.15 ± 0.14 - 89.79 ± 0.16µg/ml) than fresh leaves (71.65 ± 0.45 -81.94 ± 0.84 µg/ml) at 100 µg/ml of sample extract. The total phenolic contents of dried leaf extracts revealed higher amounts in all lines ranging from 19.57±0.57 to 43.17±0.67mg gallic acid equivalent /100 g DW when compared with fresh leaf extracts, where the values ranged from 9.68 ± 2.20 to 28.5 ± 3.90 mg gallic acid equivalent /100 g fresh weight except for two lines which showed greater total phenolic contents than in the dried leaves. High total phenolic content may help contribute to the overall high antioxidant activity of the plant. FTIR identified the presence of major active functional groups including alcohol, ester, amide, alkanes, alkenes, carboxylic acid, ketones, and aldehyde in four partitioning solvents (n-hexane, ethyl acetate, butanol, and methanol) leaf extracts of lemongrass samples.Lemongrass leaves are widely used for tea and the treatment of malaria. The present study used Soxhlet extraction with aqueous ethanol (v/v). Fresh and dried leaves of selected ten lemongrasses (Cymbopogon citratus) accessions from different geographical regions in Nigeria were examined for total phenolic contents, and antioxidant activities. Aqueous methanol extraction was carried out and further partitioned into hexane, ethyl acetate, and butanol to obtain fractions according to their polarities. Fourier Transform Infrared Spectroscopy (FTIR) was carried out to identify the functional groups that may be present. Among the ten accessions, the leaf extracts at five different concentrations exhibited increasing antioxidant activities using DPPH (2,2-diphenyl- 1- picrylhydrazyl) radical scavenging test, stronger activities for dried leaves (71.15 ± 0.14 - 89.79 ± 0.16µg/ml) than fresh leaves (71.65 ± 0.45 -81.94 ± 0.84 µg/ml) at 100 µg/ml of sample extract. The total phenolic contents of dried leaf extracts revealed higher amounts in all lines ranging from 19.57±0.57 to 43.17±0.67mg gallic acid equivalent /100 g DW when compared with fresh leaf extracts, where the values ranged from 9.68 ± 2.20 to 28.5 ± 3.90 mg gallic acid equivalent /100 g fresh weight except for two lines which showed greater total phenolic contents than in the dried leaves. High total phenolic content may help contribute to the overall high antioxidant activity of the plant. FTIR identified the presence of major active functional groups including alcohol, ester, amide, alkanes, alkenes, carboxylic acid, ketones, and aldehyde in four partitioning solvents (n-hexane, ethyl acetate, butanol, and methanol) leaf extracts of lemongrass samples.

Keywords: antioxidant acivity, phenolic content, natural product, FTIR

Procedia PDF Downloads 12
5559 Fluoride as Obturating Material in Primary Teeth

Authors: Syed Ameer Haider Jafri

Abstract:

The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth.

Keywords: obturating material, primary teeth, root canal treatment, success rate

Procedia PDF Downloads 290
5558 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 100
5557 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman

Abstract:

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh

Procedia PDF Downloads 211
5556 Biocompatibility assessment of different origin Barrier Membranes for Guided Bone Regeneration

Authors: Antonio Munar-Frau, Sascha Klismoch, Manfred Schmolz, Federico Hernandez-Alfaro, Jordi Caballe-Serrano

Abstract:

Introduction: Biocompatibility of biomaterials has been proposed as one of the main criteria for treatment success. For guided bone regeneration (GBR), barrier membranes present a conflict given the number of origins and modifications of these materials. The biologic response to biomaterials is orchestrated by a series of events leading to the integration or rejection of the biomaterial, posing questions such as if a longer occlusive property may trigger an inflammatory reaction. Whole blood cultures are a solution to study the immune response to drugs or biomaterials during the first 24-48 hours. The aim of this study is to determine the early immune response of different origins and chemical modifications of barrier membranes. Materials & Methods: 5 different widely used barrier membranes were included in this study: Acellular dermal matrix (AlloDerm, LifeCell®), Porcine Peritoneum (BioGide, Geistlich Pharma®), Porcine Pericardium (Jason, Botiss Biomaterials GmbH®), Porcine Cross-linked collagen (Ossix Plus, Datum Dental®) and d-PTFE (Cytoplast TXT, Osteogenics Biomedical®). Blood samples were extracted from 3 different healthy donors and incubated with the different samples of barrier membranes for 24 hours. After the incubation time, serum samples were obtained and analyzed by means of biocompatibility assays taking into account 42 markers. Results: In an early stage of the inflammatory response, the Acellular dermal matrix, porcine peritoneum and porcine cross-linked collagen expressed similar patterns of cytokine expression with a great manifestation of ENA 78. Porcine pericardium and d-PTFE presented similar cytokine activation, especially for MMP-3 and MMP-9, although other cytokines were highlighted with lower expression. For the later immune response, Porcine peritoneum and acellular dermal matrix MCP-1 and IL-15 were evident. Porcine pericardium, porcine cross-linked collagen and d-PTFE presented a high expression of IL-16 and lower manifestation of other cytokines. Different behaviors depending on an earlier or later stage of the inflammation process were observed. Barrier membrane inflammatory expression does not only differ depending on the origin, variables such as treatment of the collagen and polymers may also have a great impact on the cytokine expression of the studied barrier membranes during inflammation. Conclusions: Surface treatment and modifications might affect the biocompatibility of the membranes, as different cytokine expressions were evidently depending on the origin of the biomaterial. This study is only a brushstroke regarding the biocompatibility of materials, as it is one of the pioneer studies for ex vivo barrier membranes assays. Studies regarding surface modification are needed in order to clarify mystifications of barrier membrane science.

Keywords: biomaterials, bone regeneration, biocompatibility, inflammation

Procedia PDF Downloads 142
5555 Influence of Thermal Annealing on Phase Composition and Structure of Quartz-Sericite Minerale

Authors: Atabaev I. G., Fayziev Sh. A., Irmatova Sh. K.

Abstract:

Raw materials with high content of Kalium oxide widely used in ceramic technology for prevention or decreasing of deformation of ceramic goods during drying process and under thermal annealing. Becouse to low melting temperature it is also used to decreasing of the temperature of thermal annealing during fabrication of ceramic goods [1,2]. So called “Porceline or China stones” - quartz-sericite (muscovite) minerals is also can be used for prevention of deformation as the content of Kalium oxide in muscovite is rather high (SiO2, + KAl2[AlSi3O10](OH)2). [3] . To estimation of possibility of use of this mineral for ceramic manufacture, in the presented article the influence of thermal processing on phase and a chemical content of this raw material is investigated. As well as to other ceramic raw materials (kaoline, white burning clays) the basic requirements of the industry to quality of "a porcelain stone» are following: small size of particles, relative high uniformity of disrtribution of components and phase, white color after burning, small content of colorant oxides or chromophores (Fe2O3, FeO, TiO2, etc) [4,5]. In the presented work natural minerale from the Boynaksay deposit (Uzbekistan) is investigated. The samples was mechanically polished for investigation by Scanning Electron Microscope. Powder with size of particle up to 63 μm was used to X-ray diffractometry and chemical analysis. The annealing of samples was performed at 900, 1120, 1350oC during 1 hour. Chemical composition of Boynaksay raw material according to chemical analysis presented in the table 1. For comparison the composition of raw materials from Russia and USA are also presented. In the Boynaksay quartz – sericite the average parity of quartz and sericite makes 55-60 and 30-35 % accordingly. The distribution of quartz and sericite phases in raw material was investigated using electron probe scanning electronic microscope «JEOL» JXA-8800R. In the figure 1 the scanning electron microscope (SEM) micrograps of the surface and the distributions of Al, Si and K atoms in the sample are presented. As it seen small granular, white and dense mineral includes quartz, sericite and small content of impurity minerals. Basically, crystals of quartz have the sizes from 80 up to 500 μm. Between quartz crystals the sericite inclusions having a tablet form with radiant structure are located. The size of sericite crystals is ~ 40-250 μm. Using data on interplanar distance [6,7] and ASTM Powder X-ray Diffraction Data it is shown that natural «a porcelain stone» quartz – sericite consists the quartz SiO2, sericite (muscovite type) KAl2[AlSi3O10](OH)2 and kaolinite Al203SiO22Н2О (See Figure 2 and Table 2). As it seen in the figure 3 and table 3a after annealing at 900oC the quartz – sericite contains quartz – SiO2 and muscovite - KAl2[AlSi3O10](OH)2, the peaks related with Kaolinite are absent. After annealing at 1120oC the full disintegration of muscovite and formation of mullite phase Al203 SiO2 is observed (the weak peaks of mullite appears in fig 3b and table 3b). After annealing at 1350oC the samples contains crystal phase of quartz and mullite (figure 3c and table 3с). Well known Mullite gives to ceramics high density, abrasive and chemical stability. Thus the obtained experimental data on formation of various phases during thermal annealing can be used for development of fabrication technology of advanced materials. Conclusion: The influence of thermal annealing in the interval 900-1350oC on phase composition and structure of quartz-sericite minerale is investigated. It is shown that during annealing the phase content of raw material is changed. After annealing at 1350oC the samples contains crystal phase of quartz and mullite (which gives gives to ceramics high density, abrasive and chemical stability).

Keywords: quartz-sericite, kaolinite, mullite, thermal processing

Procedia PDF Downloads 395
5554 Conception of Increasing the Efficiency of Excavation Shoring by Prestressing Diaphragm Walls

Authors: Mateusz Frydrych

Abstract:

The construction of diaphragm walls as excavation shoring as well as part of deep foundations is widely used in geotechnical engineering. Today's design challenges lie in the optimal dimensioning of the cross-section, which is demanded by technological considerations. Also in force is the issue of optimization and sustainable use of construction materials, including reduction of carbon footprint, which is currently a relevant challenge for the construction industry. The author presents the concept of an approach to achieving increased efficiency of diaphragm wall excavation shoring by using structural compression technology. The author proposes to implement prestressed tendons in a non-linear manner in the reinforcement cage. As a result bending moment is reduced, which translates into a reduction in the amount of steel needed in the section, a reduction in displacements, and a reduction in the scratching of the casing, including the achievement of better tightness. This task is rarely seen and has not yet been described in a scientific way in the literature. The author has developed a dynamic numerical model that allows the dimensioning of the cross-section of a prestressed shear wall, as well as the study of casing displacements and cross-sectional forces in any defined computational situation. Numerical software from the Sofistik - open source development environment - was used for the study, and models were validated in Plaxis software . This is an interesting idea that allows for optimizing the execution of construction works and reducing the required resources by using fewer materials and saving time. The author presents the possibilities of a prestressed diaphragm wall, among others, using. The example of a diaphragm wall working as a cantilever at the height of two underground floors without additional strutting or stability protection by using ground anchors. This makes the execution of the work more criminal for the contractor and, as a result, cheaper for the investor.

Keywords: prestressed diaphragm wall, Plaxis, Sofistik, innovation, FEM, optimisation

Procedia PDF Downloads 57