Search results for: energy crops
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8901

Search results for: energy crops

4671 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 294
4670 Improve of Biomass Properties through Torrefaction Process

Authors: Malgorzata Walkowiak, Magdalena Witczak, Wojciech Cichy

Abstract:

Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process.

Keywords: biomass, lignocellulosic materials, solid biofuels, torrefaction

Procedia PDF Downloads 224
4669 Genetic Diversity of Sugar Beet Pollinators

Authors: Ksenija Taški-Ajdukovic, Nevena Nagl, Živko Ćurčić, Dario Danojević

Abstract:

Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin.

Keywords: auto fertility, genetic diversity, pollinator, SSR, sugar beet

Procedia PDF Downloads 450
4668 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 203
4667 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)

Authors: Virgo Sulakatko

Abstract:

The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.

Keywords: ETICS, construction technology, construction management, life cycle costing

Procedia PDF Downloads 411
4666 Analysis of Genic Expression of Honey Bees Exposed to Sublethal Pesticides Doses Using the Transcriptome Technique

Authors: Ricardo de Oliveira Orsi, Aline Astolfi, Daniel Diego Mendes, Isabella Cristina de Castro Lippi, Jaine da Luz Scheffer, Yan Souza Lima, Juliana Lunardi, Giovanna do Padro Ribeiro, Samir Moura Kadri

Abstract:

NECTAR Brazilian group (Center of Education, Science, and Technology in Rational Beekeeping) conducted studies on the pesticides honey bees effects using the transcriptome sequencing (RNA-Seq) analyzes for gene expression studies. In this way, we analyzed the effects of Pyraclostrobin and Fipronil on the honey bees with 21 old-days (forager) in laboratory conditions. For this, frames containing sealed brood were removed from the beehives and maintenance on the stove (32°C and 75% humidity) until the bees were born. So, newly emerged workers were marked on the pronotum with a non-toxic pen and reintroduced into their original hives. After 21 days, 120 marked bees were collected with an entomological forces and immediately stored in Petri dishes, perforated to ensure ventilation, and kept fasted for 3 hours. These honeybees were exposed to food contaminated or not with the sublethal dose of Pyraclostrobin (850 ppb/bee) or Fipronil (2.5 ppb/bee). After four hours of exposure, 15 bees from each treatment were referred to transcriptome analysis. Total RNA analysis was extracted from the brain pools (03 brains per pool) using the TRIzol® reagent protocol according to the manufacturer's instructions. cDNA libraries were constructed, and the FASTQC program was used to check adapter content and assess the quality of raw reads. Differential expression analysis was performed with the DESeq2 package. Genes that had an adjusted value of less than 0.05 were considered to be significantly up-regulated. Regarding the Pyraclostrobin, alterations were observed in the pattern of 17 gene related to of antioxidant system, cellular respiration, glucose metabolism, and regulation of juvenile hormone and the hormone insulin. Glyphosate altered the 10 gene related to the digestive system, exoskeleton composition, vitamin E transport, and antioxidant system. The results indicate that the necessity of studies using the sublethal doses to evaluate the pesticides uses and risks on crops and its effects on the honey bees.

Keywords: beekeeping, honey bees, pesticides, transcriptome

Procedia PDF Downloads 117
4665 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading

Authors: Kwak, Hyo-Gyung, Gang, Han Gul

Abstract:

In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.

Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy

Procedia PDF Downloads 510
4664 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 119
4663 Rapid Weight Loss in Athletes: A Look at Suppressive Effects on Immune System

Authors: Nazari Maryam, Gorji Saman

Abstract:

For most competitions, athletes usually engage in a process called rapid weight loss (RWL) and subsequent rapid weight gain (RWG) in the days preceding the event. Besides the perfection of performance, weight regulation mediates a self-image of being “a real athlete” which is mentally important as a part of the pre-competition preparation. This feeling enhances the focus and commitment of the athlete. There is a large body of evidence that weight loss, particularly in combat sports, results in several health benefits. However, intentional weight loss beyond normal levels might have unknown negative special effects on the immune system. As the results show, a high prevalence (50%) of RWL is happening among combat athletes. It seems that energy deprivation and intense exercise to reach RWL results in altered blood cell distribution through modification of body composition that, in turn, changes B and T-Lymphocyte and/or CD4 T-Helper response. Moreover, it may diminish IgG antibody levels and modulate IgG glycosylation after this course. On the other hand, some studies show suppression of signaling and regulation of IgE antibody and chemokine production are responsible for immunodeficiency following a period of low-energy availability. Some researchers hypothesize that severe glutamine depletion, which occurs during exercise and calorie restriction, is responsible for this immune system weakness. However, supplementation by this amino acid is not prescribed yet. Therefore, weight loss is achieved not only through chronic strategies (body fat losses) but also through acute manipulations prior to competition should be supervised by a sports nutritionist to minimize side effects on the immune system and other body systems.

Keywords: athletes, immune system, rapid weight loss, weight loss strategies

Procedia PDF Downloads 105
4662 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 107
4661 Development and Validation of a Semi-Quantitative Food Frequency Questionnaire for Use in Urban and Rural Communities of Rwanda

Authors: Phenias Nsabimana, Jérôme W. Some, Hilda Vasanthakaalam, Stefaan De Henauw, Souheila Abbeddou

Abstract:

Tools for the dietary assessment in adults are limited in low- and middle-income settings. The objective of this study was to develop and validate a semi-quantitative food frequency questionnaire (FFQ) against the multiple pass-24 h recall tool for use in urban and rural Rwanda. A total of 212 adults (154 females and 58 males), 18-49 aged, including 105 urban and 107 rural residents, from the four regions of Rwanda, were recruited in the present study. A multiple-pass 24- H recall technique was used to collect dietary data in both urban and rural areas in four different rounds, on different days (one weekday and one weekend day), separated by a period of three months, from November 2020 to October 2021. The details of all the foods and beverages consumed over the 24h period of the day prior to the interview day were collected during face-to-face interviews. A list of foods, beverages, and commonly consumed recipes was developed by the study researchers and ten research assistants from the different regions of Rwanda. Non-standard recipes were collected when the information was available. A single semi-quantitative FFQ was also developed in the same group discussion prior to the beginning of the data collection. The FFQ was collected at the beginning and the end of the data collection period. Data were collected digitally. The amount of energy and macro-nutrients contributed by each food, recipe, and beverage will be computed based on nutrient composition reported in food composition tables and weight consumed. Median energy and nutrient contents of different food intakes from FFQ and 24-hour recalls and median differences (24-hour recall –FFQ) will be calculated. Kappa, Spearman, Wilcoxon, and Bland-Altman plot statistics will be conducted to evaluate the correlation between estimated nutrient and energy intake found by the two methods. Differences will be tested for their significance and all analyses will be done with STATA 11. Data collection was completed in November 2021. Data cleaning is ongoing and the data analysis is expected to be completed by July 2022. A developed and validated semi-quantitative FFQ will be available for use in dietary assessment. The developed FFQ will help researchers to collect reliable data that will support policy makers to plan for proper dietary change intervention in Rwanda.

Keywords: food frequency questionnaire, reproducibility, 24-H recall questionnaire, validation

Procedia PDF Downloads 127
4660 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 405
4659 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter

Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh

Abstract:

Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.

Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions

Procedia PDF Downloads 115
4658 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 44
4657 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 85
4656 Sustainable Development: Soil Conservation with Cultivation of Cassava (Manihot esculenta) Based on Local Wisdom

Authors: Adiyasa Muda Zannatan

Abstract:

Cassava (Manihot esculenta) is a plant originating from Brazil. Cassava plants categorized as sixth major food in the world after wheat, rice, corn and potatoes. It has been cultivated on hilly land for 97 years since 1918 at Cireundeu village, West Java Province, Indonesia. Cireundeu traditional village located in the mountain valleys and has a hilly slope up to 38%. Cassava is used as the primary food in that area. Uniquely, Cassava productivity is stable and continues until now. The assessment of soil quality is taking soil samples in the area and analysis the soil in laboratory. The result of analysis that soil in the area is not degraded because it has optimum nutrient, organic matter, and high value of cation exchange capacity in soil even though it has been cultivated in scarp with high slope. Commonly, soil on scarp with high slope has a high rate erosion and poor nutrient. It proved that cassava is able to be an alternative technique of soil conservation in the areas that have a high slope. Beside that, cassava can be utilized as a plant food, feed, fertilizer, and energy. With the utilization of Cassava, the target of Sustainable Development Goals (SDG's) will be achieved with consideration three important components include economy, social, and environment. In economy, Cassava can to be the commercial product like processed food, feed, and alternative energy. In social, it will increase social welfare and will be hereditary. And for environment, Cassava prevents soil from erosion and keeps soil quality.

Keywords: Cassava, local wisdom, conservation, soil quality, sustainable

Procedia PDF Downloads 279
4655 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan

Authors: Sawsan Domi

Abstract:

Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.

Keywords: building envelope, building regulations, glazed facades, solar radiation

Procedia PDF Downloads 202
4654 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention

Authors: Paula A. Cruise, Carvell McLeary

Abstract:

Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.

Keywords: context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention

Procedia PDF Downloads 233
4653 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule

Authors: Leyla Noroozbabaee, David Nickerson

Abstract:

We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.

Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling

Procedia PDF Downloads 72
4652 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 65
4651 Multidimensional Approach to Analyse the Environmental Impacts of Mobility

Authors: Andras Gyorfi, Andras Torma, Adrienn Buruzs

Abstract:

Mobility has been evolved to a determining field of science. The continuously developing segment involves a variety of affected issues such as public and economic sectors. Beside the changes in mobility the state of environment had also changed in the last period. Alternative mobility as a separate category and the idea of its widespread appliance is such a new field that needs to be studied deeper. Alternative mobility implies finding new types of propulsion, using innovative kinds of power and energy resources, revolutionizing the approach to vehicular control. Including new resources and excluding others has such a complex effect which cannot be unequivocally confirmed by today’s scientific achievements. Changes in specific parameters will most likely reduce the environmental impacts, however, the production of new substances or even their subtraction of the system will cause probably energy deficit as well. The aim of this research is to elaborate the environmental impact matrix of alternative mobility and cognize the factors that are yet unknown, analyse them, look for alternative solutions and conclude all the above in a coherent system. In order to this, we analyse it with a method called ‘the system of systems (SoS) method’ to model the effects and the dynamics of the system. A part of the research process is to examine its impacts on the environment, and to decide whether the newly developed versions of alternative mobility are affecting the environmental state. As a final result, a complex approach will be used which can supplement the current scientific studies. By using the SoS approach, we create a framework of reference containing elements in which we examine the interactions as well. In such a way, a flexible and modular model can be established which supports the prioritizing of effects and the deeper analysis of the complex system.

Keywords: environment, alternative mobility, complex model, element analysis, multidimensional map

Procedia PDF Downloads 306
4650 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 89
4649 Soil Properties and Crop Productivity of Kiln Sites in the Highlands of North-western Ethiopia

Authors: Hanamariam Mekonnen

Abstract:

Ethiopian farmers traditionally produce charcoal under several kilns on cultivated land: particularly in Kasiry micro-watershed Fagita Lekoma district of Northwestern Ethiopia. However, the effects of such soil heating and remnants of charcoal leftover on soils have not been adequately documented. Hence, this study tried to quantify the effects of such kiln sites on selected soil properties and wheat crop performance. Soils from four kiln sites were thus purposively sampled at depths of 0-20 cm, 20-40 cm and 40-60 cm and were compared with the respective soil layers of none-kiln sites from similar adjacent fields. While soil moisture content was sampled at kiln and none-kiln site in wet and dry seasons from each depth. In addition, a pot experiment was conducted using two sources of biochar (Acacia decurrens and Eucalyptus Camaldulensis) with four rates (0, 10, 20, and 40 t/ha) and compared with crops grown from soils of 1kiln sites without biochar application laid out in a CRD with three replications. The data were analyzed using SAS software Version 9.4.The result revealed notable variations of kiln site soils and along soil depth. The appreciable increased (p<0.05) soil pH (5.5 to 5.74), organic carbon (3.89 to 4.27%), TN (0.30 to 0.32%), CEC (32.59 to 35.23 cmolckg-1), Ca (6.44 to 7.9 cmolckg-1), Mg (4.48 to 5.46 cmolckg-1), and significantly (p<0.01) Av. P (30.25 to 46.4 ppm) and K (2.11 to 2.82 cmolckg-1) were recorded from the none-kiln to kiln soils, respectively. On the other hand, ex. acidity and aluminum, available Fe and Mn were reduced from 2.20 to 1.54, 1.95 to 1.31 cmolckg-1 and 57.46 to 41.40 and 5.65 to 3.86 ppm, respectively, from the control to the kiln. Soil texture was significantly affected by soil heating and along soil depth. The sand content was (p<0.05) varied between the value of 23% to 29% from none-kiln to kiln site, and clay content was (p<0.01) increased from 0-20 cm (32%) soil depth to 40-60 cm (43%) deeper soil. Significantly (p<0.05) higher Soil moisture content was recorded at none-kiln site (45.85%) compared to kiln (40.44%) in wet season, whereas in dry season, lower moisture content was revealed at kiln site (26%) compared to none-kiln (30.7%). As wet to dry season, soil moisture was decreased from 43% to 28% respectively. Bulk density (P<0.01) varied between 0.88 to 0.94 gcm-3 from control to kiln in dry season. Similarly, the value of soil pH (6.10), Av. P (58.12), exchangeable bases (Ca (9.83), Mg (6.19) and K (3.67)) were (p<0.01) higher at the 0-20 cm soil depth as compared to the deeper soils, the result of soil moisture (30 to 42%) and CEC (31 to 36 cmolckg-1) increased down the soil profile. After wheat harvest, soil pH, Av. P, CEC, and exchangeable bases (Mg, K and Na) were significantly higher in the kiln soil, while soil moisture and OC increased by the applied biochar of 20 and 40 ton/ha. High yield 2.28 gpot-1 (p<0.01) was recorded in kiln soil, growth parameters of wheat were significantly increased with increasing biochar rates.

Keywords: biochar, kasiry micro-watershed, kiln site, none-kiln site, soil properties

Procedia PDF Downloads 71
4648 Sublethal Effects of Clothianidin and Summer Oil on the Demographic Parameters and Population Projection of Bravicoryne Brassicae(Hemiptera: Aphididae)

Authors: Mehdi Piri Ouchtapeh, Fariba Mehrkhou, Maryam Fourouzan

Abstract:

The cabbage aphid, Bravicoryne brassicae (Hemiptera: Aphididae), is known as an economically important and oligophagous pest of different cole crops. The polyvolitine characteristics of B. brassicae resulted in resistance to insecticides. For this purpose, in this study, the sub-lethal concentration (LC25) of two insecticides, clothianidin and summer oil, on the life table parameters and population projection of cabbage aphid were studied at controlled condition (20±1 ℃, R.H. 60 ±5 % and a photoperiod of 16:8 h (L:D). The dipping method was used in bioassay and life table studies. Briefly, the leaves of cabbage containing 15 the same-aged (24h) adults of cabbage aphid (four replicates) were dipped into the related concentrations of insecticides for 10 s. The sub-lethal (LC25) obtained concentration were used 5.822 and 108.741 p.p.m for clothianidin and summer oil, respectively. The biological and life table studies were done using at least 100, 93 and 82 the same age of eggs for control, summer oil and clothianidin treatments respectively. The life history data of the greenhouse whitefly cohorts exposed to sublethal concentration of the aforementioned insecticides were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results of this study showed that the used insecticides affected the developmental time, survival rate, adult longevity, and fecundity of the F1 generation. The developmental time on control, clothianidin and summer oil treatments was obtained (5.91 ± 0.10 days), (7.64 ± 0.12 days) and (6.66 ± 0.10 days), respectively. The sublethal concentration of clothianidin resulted in decreasing of adult longevity (8.63 ± 0.30 days), fecundity (14.14 ± 87 nymphs), survival rate (71%) and the life expectancy (10.26 days) of B. brassicae, as well. Additionally, usage of LC25 insecticides led to decreasing of the net reproductive rate (R0) of the cabbage aphid compared to summer oil and control treatments. The intrinsic rate of increase (r) (day-1) was decreased in F1 adults of cabbage aphid compared with other treatments. Additionally, the population projection results were accordance with the population growth rate of cabbage aphid. Therefore, the findings of this research showed that, however, both of the insecticides were effective on cabbage aphid population, but clothianidin was more effective and could be consider in the management of aforementioned pest.

Keywords: the cabbage aphid, sublethal effects, survival rate, population projection, life expectancy

Procedia PDF Downloads 56
4647 Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India

Authors: S. Hannah Elizabeth, A. Panneerselvam

Abstract:

Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2.

Keywords: bioremediation, biodegradation, biotransformation, sequencing

Procedia PDF Downloads 452
4646 Possibilities and Challenges for District Heating

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.

Keywords: district heating, sustainable business strategies, sustainable development, system approach

Procedia PDF Downloads 73
4645 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield

Authors: Oqba Basal, András Szabó

Abstract:

Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.

Keywords: drought stress, inoculation, N-fertilizer, soybean physiology, yield

Procedia PDF Downloads 142
4644 Effect of L-Dopa on Performance and Carcass Characteristics in Broiler Chickens

Authors: B. R. O. Omidiwura, A. F. Agboola, E. A. Iyayi

Abstract:

Pure form of L-Dopa is used to enhance muscular development, fat breakdown and suppress Parkinson disease in humans. However, the L-Dopa in mucuna seed, when present with other antinutritional factors, causes nutritional disorders in monogastric animals. Information on the utilisation of pure L-Dopa in monogastric animals is scanty. Therefore, effect of L-Dopa on growth performance and carcass characteristics in broiler chickens was investigated. Two hundred and forty one-day-old chicks were allotted to six treatments, which consisted of a positive control (PC) with standard energy (3100Kcal/Kg) and negative control (NC) with high energy (3500Kcal/Kg). The rest 4 diets were NC+0.1, NC+0.2, NC+0.3 and NC+0.4% L-Dopa, respectively. All treatments had 4 replicates in a completely randomized design. Body weight gain, final weight, feed intake, dressed weight and carcass characteristics were determined. Body weight gain and final weight of birds fed PC were 1791.0 and 1830.0g, NC+0.1% L-Dopa were 1827.7 and 1866.7g and NC+0.2% L-Dopa were 1871.9 and 1910.9g respectively, and the feed intake of PC (3231.5g), were better than other treatments. The dressed weight at 1375.0g and 1357.1g of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than other treatments. Also, the thigh (202.5g and 194.9g) and the breast meat (413.8g and 410.8g) of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than birds fed other treatments. The drum stick of birds fed NC+0.1% L-Dopa (220.5g) was observed to be better than birds on other diets. Meat to bone ratio and relative organ weights were not affected across treatments. L-Dopa extract, at levels tested, had no detrimental effect on broilers, rather better bird performance and carcass characteristics were observed especially at 0.1% and 0.2% L-Dopa inclusion rates. Therefore, 0.2% inclusion is recommended in diets of broiler chickens for improved performance and carcass characteristics.

Keywords: broilers, carcass characteristics, l-dopa, performance

Procedia PDF Downloads 298
4643 Nutritional Value and Leaf Disease Resistance of Different Varieties of Wheat

Authors: Danutė Jablonskytė-Raščė, Vidas Damanauskas

Abstract:

The wheat (Triticum) genus is divided into many species, of which only two are widely distributed in the world - common wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.). Common (soft) wheat is the most common type of wheat in the world and the most suitable for the harsh climate of Lithuania, but the grains have lower protein content and poorer nutritional properties. Durum wheat is characterized by a high protein content of the grain, but it is a crop of warmer climates grown in southern countries, Italy, Spain, the United States, Egypt, etc. Today's important issue is food, its resources and quality. The research focuses on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the warming climate conditions. Climatic conditions change the distribution of fungi and their hosts. Plants that have grown in our climate for many years have adapted to the use of fungicides, so the aim is to study cereal varieties grown in warmer climates and compare them with our country's varieties, studying their nutritional value and the spread of fungal diseases. The field experiments of different varieties of wheat were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2023. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the resistance to leaf diseases and the nutritional value of various wheat varieties. This research aims to focus on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the conditions of the warming climate. The study found that hot and humid summer weather led to the spread of foliar diseases in wheat. Tan spot (Pyrenophora tritici-repentis) is mostly spread in wheat crops. This disease had an average prevalence of 86.90%. The wheat crop was sparse, so this year was unfavorable for the spread of powdery mildew (Blumeria graminis). Dry weather prevailed during the period of flowering of cereals, which prevented the spread of ear diseases. Examining the qualitative indicators of grain, it was found that durum wheat had the best parameters.

Keywords: varieties, wheat, leaf disease, grain quality

Procedia PDF Downloads 28
4642 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum

Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas

Abstract:

Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.

Keywords: microalgae, illumination, nitrate uptake, flashing light effect

Procedia PDF Downloads 98