Search results for: structural dynamic modification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8782

Search results for: structural dynamic modification

4582 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+

Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa

Abstract:

Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.

Keywords: adsorption, acidity, ion exchange, zeolite

Procedia PDF Downloads 199
4581 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories

Authors: Haj Najafi Leila, Tehranizadeh Mohsen

Abstract:

Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.

Keywords: dependency, story-cost, cost modes, engineering demand parameter

Procedia PDF Downloads 184
4580 Facile Synthesis of CuO Nanosheets on Cu Foil for H2O2 Detection

Authors: Yu-Kuei Hsu, Yan-Gu Lin

Abstract:

A facile and simple fabrication of copper(II) oxide (CuO) nanosheet on copper foil as nanoelectrode for H2O2 sensing application was proposed in this study. The spontaneous formation of CuO nanosheets by immersing the copper foil into 0.1 M NaOH aqueous solution for 48 hrs was carried out at room temperature. The sheet-like morphology with several ten nanometers in thickness and ~500 nm in width was observed by SEM. Those nanosheets were confirmed the monoclinic-phase CuO by the structural analysis of XRD and Raman spectra. The directly grown CuO nanosheets film is mechanically stable and offers an excellent electrochemical sensing platform. The CuO nanosheets electrode shows excellent electrocatalytic response to H2O2 with significantly lower overpotentials for its oxidation and reduction and also exhibits a fast response and high sensitivity for the amperometric detection of H2O2. The novel spontaneously grown CuO nanosheets electrode is readily applicable to other analytes and has great potential applications in the electrochemical detection.

Keywords: CuO, nanosheets, H2O2 detection, Cu foil

Procedia PDF Downloads 292
4579 A Contribution to the Polynomial Eigen Problem

Authors: Malika Yaici, Kamel Hariche, Tim Clarke

Abstract:

The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials.

Keywords: eigenvalues/eigenvectors, latent values/vectors, matrix fraction description, state space description

Procedia PDF Downloads 474
4578 Practical Methods for Automatic MC/DC Test Cases Generation of Boolean Expressions

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that aims to prove that all conditions involved in a Boolean expression can influence the result of that expression. In the context of automotive, MC/DC is highly recommended and even required for most security and safety applications testing. However, due to complex Boolean expressions that often embedded in those applications, generating a set of MC/DC compliant test cases for any of these expressions is a nontrivial task and can be time consuming for testers. In this paper we present an approach to automatically generate MC/DC test cases for any Boolean expression. We introduce novel techniques, essentially based on binary trees to quickly and optimally generate MC/DC test cases for the expressions. Thus, the approach can be used to reduce the manual testing effort of testers.

Keywords: binary trees, MC/DC, test case generation, nontrivial task

Procedia PDF Downloads 455
4577 Characterization of Enhanced Thermostable Polyhydroxyalkanoates

Authors: Ahmad Idi

Abstract:

The biosynthesis and properties of polyhydroxyalkanoate (PHA) are determined by the bacterial strain and the culture condition. Hence this study elucidates the structure and properties of PHA produced by a newly isolated strain of photosynthetic bacterium, Rhodobacter sphaeroides ADZ101 grown under the optimized culture condition. The properties of the accumulated PHA were determined via FTIR, NMR, TGA, and GCMS analyses. The results showed that acetate and ammonia chloride had the highest PHA accumulation with a ratio of 32.5 mM at neutral pH. The structural analyses showed that the polymer comprises both short and medium-chain length monomers ranging from C5, C13, C14, and C18, as well as the presence of novel PHA monomers. The thermal analysis revealed that the maximum temperature of decomposition occurred at 395°C and 454°C, indicating two major decomposition reactions. Thus this bacterial strain, optimized culture condition, and the abundance of novel monomers enhanced the thermostability of the accumulated PHA.

Keywords: bioplastic polyhydroxyalkanoates Rhodobacter sphaeroides ADZ101 thermostable PHA

Procedia PDF Downloads 149
4576 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 233
4575 Low Temperature Synthesis of Styrene via Catalytic Dehydrogenation of Ethylbenzene Using Vanadia Support SnO₂ Catalysts

Authors: S. Said, Samira M. Abdel-Azim, Aya M. Matloob

Abstract:

Nowadays, one of the most important industries is how to prepare a starting material like (styrene) which is used for the preparation of many petrochemical products in simple and inexpensive ways. Oxidative dehydrogenation of ethylbenzene (using CO2 as a soft oxidant) can solve this issue when using highly effective catalysts like SnO₂ and its nanocomposites (V₂Ox/SnO₂.) This study shows the effect of different synthesis methods of SnO₂ either by ethylene glycol or MOF then, uses the impregnation method for the preparation of its nanocomposite catalysts (V₂Ox/SnO₂.). The prepared catalysts were characterized by using different analytical techniques like XRD, BET, FTIR, TGA, XPS, and H₂-TPR. Oxidative dehydrogenation experimental results demonstrated that the composite V loading of 1 and 5 wt.% V₂Ox/SnO₂ (MOF &EG) catalyst exhibited extraordinarily high catalytic performance with selectivity toward styrene formation > 90% at 500oC, which can be attributed to the superior surface, textural, and structural properties of nanocomposites catalysts.

Keywords: SnO₂, vanadium oxide, ethylbenzene dehydrogenation, styrene, CO₂

Procedia PDF Downloads 36
4574 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers

Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh

Abstract:

Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.

Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers

Procedia PDF Downloads 215
4573 Assessment of the Energy Balance Method in the Case of Masonry Domes

Authors: M. M. Sadeghi, S. Vahdani

Abstract:

Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.

Keywords: energy balance method, pushover analysis, time history analysis, masonry dome

Procedia PDF Downloads 283
4572 The Growth Reaction, Membrane Potential and Oxidative Stress of Maize Coleoptile Cells Incubated in the Presence of the Naphthoquinones

Authors: Malgorzata Rudnicka, Waldemar Karcz

Abstract:

Introduction: Naphthoquinones are widely occurring organic compounds produced by bacteria, fungi, and plants. They can act as the functional components of biochemical systems (plastoquinone) as well as biologically active substances, which have a negative impact on environmental processes. Naphthoquinones seem to act through two mechanisms: a covalent modification of biological molecules at their nucleophilic sites or by generation of reactive oxygen species (ROS) connected with redox cycling. Investigating the effect of naphthoquinones (1,4-naphthoquinone, lawsone and naphthazarin) on the elongation growth, membrane potential and the level of oxidative stress of maize cells seems to be important due to the possibility of using these substances as herbicides. Methods: All experiments were performed on etiolated maize coleoptile segments. Simultaneous measurements of elongation growth and pH of the incubation medium were carried out using an angular position transducer, allowing a precise record of the growth kinetics. To compare the oxidative stress level induced by all tested naphthoquinones, the changes in malondialdehyde content, as well as superoxide dismutase and catalase activities were measured. In order to measure the membrane potential of parenchymal cells the standard electrophysiology technique was used. Results: Naphthoquinones such as: 1,4-naphthoquinone, lawsone and naphthazarin were studied. It was found that all of the naphthoquinones diminished the growth of the maize coleoptile cells depending on the type of naphthoquinones and their concentration. Interestingly, naphthazarin at the intermediate concentration was less toxic compared to the others. In addition, the effect of naphthoquinones on the oxidative stress was dependent on their concentration as well. Superoxide dismutase and catalase activities were changed in the presence of higher concentrations of naphthoquinones. Similar interrelations were observed for membrane potential changes. Conclusion: It can be concluded that naphthoquinones tested differ in their toxic effect on the growth of maize coleoptile cells. Furthermore, naphthoquinones can be distinguish considering the oxidative stress level and membrane potential changes. The results presented here give new insight into the possible opportunities of practical usage of naphthoquinones for herbicides improvement.

Keywords: growth rate, membrane potential, naphthoquinones, oxidative stress

Procedia PDF Downloads 287
4571 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 53
4570 Speed Control of Brushless DC Motor Using PI Controller in MATLAB Simulink

Authors: Do Chi Thanh, Dang Ngoc Huy

Abstract:

Nowadays, there are more and more variable speed drive systems in small-scale and large-scale applications such as the electric vehicle industry, household appliances, medical equipment, and other industrial fields led to the development of BLDC (Brushless DC) motors. BLDC drive has many advantages, such as higher efficiency, better speed torque characteristics, high power density, and low maintenance cost compared to other conventional motors. Most BLDC motors use a proportional-integral (PI) controller and a pulse width modulation (PWM) scheme for speed control. This article describes the simulation model of BLDC motor drive control with the help of MATLAB - SIMULINK simulation software. The built simulation model includes a BLDC motor dynamic block, Hall sensor signal generation block, inverter converter block, and PI controller.

Keywords: brushless DC motor, BLDC, six-step inverter, PI speed

Procedia PDF Downloads 77
4569 Analysis Rotor Bearing System Dynamic Interaction with Bearing Supports

Authors: V. T. Ngo, D. M. Xie

Abstract:

Frequently, in the design of machines, some of parameters that directly affect the rotor dynamics of the machines are not accurately known. In particular, bearing stiffness support is one such parameter. One of the most basic principles to grasp in rotor dynamics is the influence of the bearing stiffness on the critical speeds and mode shapes associated with a rotor-bearing system. Taking a rig shafting as an example, this paper studies the lateral vibration of the rotor with multi-degree-of-freedom by using Finite Element Method (FEM). The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes. Then critical speeds and mode shapes are analyzed by set bearing stiffness changes. The model permitted to identify the critical speeds and bearings that have an important influence on the vibration behavior.

Keywords: lateral vibration, finite element method, rig shafting, critical speed

Procedia PDF Downloads 343
4568 Prevalence and Associated Factors of Overweight and Obesity in Children with Intellectual Disability: A Cross-Sectional Study among Chinese Children

Authors: Jing-Jing Wang, Yang Gao, Heather H. M. Kwok, Wendy Y. J. Huang

Abstract:

Objectives: Intellectual disability (ID) ranks among the top 20 most costly disorders. A child with ID creates a wide set of challenges to the individual, family, and society, and overweight and obesity aggravate those challenges. People with ID have the right to attain optimal health like the rest of the population. They should be given priority to eliminate existing health inequities. Childhood obesity epidemic and associated factors among children, in general, has been well documented, while knowledge about overweight and obesity in children with ID is scarce. Methods: A cross-sectional study was conducted among 524 Chinese children with ID (males: 68.9%, mean age: 12.2 years) in Hong Kong in 2015. Children’s height and weight were measured at school. Parents, in the presence of their children, completed a self-administered questionnaire at home about the children’s physical activity (PA), eating habits, and sleep duration in a typical week as well as parenting practices regarding children’s eating and PA, and their socio-demographic characteristics. Multivariate logistic regression estimated the potential risk factors for children being overweight. Results: The prevalence of overweight and obesity in children with ID was 31.3%, which was higher than their general counterparts (18.7%-19.9%). Multivariate analyses revealed that the risk factors of overweight and obese in children with ID included: comorbidity with autism, the maternal side being overweight or obese, parenting practices with less pressure to eat more, children having shorter sleep duration, longer periods of sedentary behavior, and higher intake frequencies of sweetened food, fried food, and meats, fish, and eggs. Children born in other places, having snacks more frequently, and having irregular meals were also more likely to be overweight or obese, with marginal significance. Conclusions: Children with ID are more vulnerable to being overweight or obese than their typically developing counterparts. Identified risk factors in this study highlight a multifaceted approach to the involvement of parents as well as the modification of some children’s questionable behaviors to help them achieve a healthy weight.

Keywords: prevalence, risk factors, obesity, children with disability

Procedia PDF Downloads 140
4567 Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS

Authors: Mansour Fakhri, Monire Zokaei

Abstract:

Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less.

Keywords: ABAQUS, lifecycle cost analysis, mechanistic empirical, perpetual pavement

Procedia PDF Downloads 387
4566 Structural and Magnetic Properties of CoFe2-xNdxO4 Spinel Ferrite Nanoparticles

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this present work, CoFe2-xNdxO4 (0.0 ≤ x ≥0.1) spinel ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method. Powder X-ray diffraction patterns were revealed the formation of cubic spinel ferrite with the signature of NdFeO3 phase at higher Nd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range between 5-15 nm. Raman and Fourier Transform Infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at octahedral as well as a tetrahedral site in CoFe2-xNdxO4 nanoparticles. The change in magnetic properties with a variation of concentration of Nd3+ ions in cobalt ferrite nanoparticles was observed.

Keywords: nanoparticles, spinel ferrites, sol-gel auto-combustion method, CoFe2-xNdxO4

Procedia PDF Downloads 503
4565 Influence of Dopant of Tin (Sn) on the Optoelectronic and Structural Properties of Cadmium Sulfide (CdS) Pallets

Authors: Himanshu Pavagadhi, Maunik Jani, S. M. Vyas, Jaymin Ray, Vimal Patel, Piyush Patel, Jignesh P. Raval

Abstract:

The preparation of pure and Sn-doped cadmium sulfide (CdS) pellets was carried out using a compression technique with a pelletizer. The energy dispersive X-ray (EDX) analysis is used to confirm the purity and stoichiometric ratio of Cd, S, and Sn in the prepared pellets. The surface morphology of the pellets was examined using a scanning electron microscope. Both XRD and Raman scattering spectrum analysis confirmed the doping effect in the CdS pellets. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure and revealed that the grain size decreases with increasing Sn dopant concentration in the parent CdS pellet. The optical properties of the pellets were evaluated by measuring diffuse reflectance using a UV-vis spectrophotometer. The analysis indicated that as the Sn concentration increases in the parent CdS pellet, the optical band gap decreases. This implies that the optical properties of the CdS material are also affected by the Sn dopant.

Keywords: CdS, Sn dopant, UV-Spetrophotometer, XRD

Procedia PDF Downloads 35
4564 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: absorption, distillation, heat pump, Unisim design

Procedia PDF Downloads 339
4563 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 55
4562 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information

Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai

Abstract:

Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.

Keywords: knowledge graph, entity alignment, transformer, deep learning

Procedia PDF Downloads 50
4561 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 235
4560 Assessment of Rehabilitation Possibilities in Case of Budapest Jewish Quarter Building Stock

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the Budapest 7th district is known as the former Jewish Quarter. The majority of the historical building stock contains multi-story tenement houses with courtyards, built around the end of the 19th century. Various rehabilitation and urban planning attempt occurred until today, mostly left unfinished. Present paper collects the past rehabilitation plans, actions and their effect which took place in the former Jewish District of Budapest. The authors aim to assess the boundaries of a complex building stock rehabilitation, by taking into account the monument protection guidelines. As a main focus of the research, structural as well as energetic rehabilitation possibilities are analyzed in case of each building by using Geographic Information System (GIS) methods.

Keywords: geographic information system, Hungary, Jewish Quarter, monument, protection, rehabilitation

Procedia PDF Downloads 269
4559 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability

Authors: G. Khamooshian, A. Abbasimoshaei

Abstract:

Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.

Keywords: excavation, soil effects, nailing, hole analyzing

Procedia PDF Downloads 189
4558 Robust Diagnosability of PEMFC Based on Bond Graph LFT

Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet

Abstract:

Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.

Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis

Procedia PDF Downloads 368
4557 Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers

Authors: Arslan Usman, Abdul Sattar, Hamid Latif, Afshan Ashfaq, Muhammad Rafique, Martin Koch

Abstract:

Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV.

Keywords: 2D materials, photoluminescence, AFM, excitons

Procedia PDF Downloads 148
4556 Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty

Authors: Adelakun O. Johnson

Abstract:

The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy.

Keywords: FDI inflows, geopolitical risk, economic policy uncertainty, panel ARDL model

Procedia PDF Downloads 31
4555 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness

Authors: Keda Li, Hong Hu

Abstract:

Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.

Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb

Procedia PDF Downloads 93
4554 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection

Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour

Abstract:

Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.

Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid

Procedia PDF Downloads 150
4553 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol

Abstract:

In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.

Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.

Procedia PDF Downloads 184