Search results for: non-linear dynamics features
3592 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 1013591 CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics
Authors: Hui Zhu, Yuan Wang, Shibo Kuang, Aibing Yu
Abstract:
The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types.Keywords: CFD-DEM, inertial effect, microchannel, separation
Procedia PDF Downloads 2993590 Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize
Authors: Shirley Lamptey, Lingling Li, Junhong Xie
Abstract:
Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment.Keywords: carbon emission, carbon emission efficiency, C sequestration, N rates, semi-arid
Procedia PDF Downloads 2413589 The Effects of Different Types of Herbicides Used for Lawn Maintenance on the Dynamics of Weeds in an Urban Environment
Authors: Yetunde I. Bulu, Moses B. Adewole, Julius O. Faluyi
Abstract:
This study investigates the effect of aggressive application of herbicide on weed succession in an urban environment in Ile-Ife, Osun State. An inspection of the communities was carried out to identify sites maintained by herbicides (test plots) and those without herbicide history (control plots). Four different experimental plots located at Olasode, Eleweran, Ife City and Parakin within Ile-Ife town were monitored during the study. Comprehensive enumeration and identification of plant populations to species level was carried out on each of the plots and at every visit to determine the direction of succession. Index of similarities was used to determine the relationship in plant species composition between plots treated with herbicide and the untreated plots. The trend of increasing plant species was observed in all the study plots. Low Similarity Index between the treated plots and the control vegetation was observed at all visitations. Low similarity was also observed between the above-ground vegetation and the seed bank in all the plots. The study concluded that the weed population observed from the experimental plots showed an increase in species richness and diversity when the plots were left to recover compared to the control plots.Keywords: herbicide, index of similarity, population, soil seed bank, succession
Procedia PDF Downloads 1653588 Identification of How Pre-Service Physics Teachers Understand Image Formations through Virtual Objects in the Field of Geometric Optics and Development of a New Material to Exploit Virtual Objects
Authors: Ersin Bozkurt
Abstract:
The aim of the study is to develop materials for understanding image formations through virtual objects in geometric optics. The images in physics course books are formed by using real objects. This results in mistakes in the features of images because of generalizations which leads to conceptual misunderstandings in learning. In this study it was intended to identify pre-service physics teachers misunderstandings arising from false generalizations. Focused group interview was used as a qualitative method. The findings of the study show that students have several misconceptions such as "the image in a plain mirror is always virtual". However a real image can be formed in a plain mirror. To explain a virtual object's image formation in a more understandable way an overhead projector and episcope and their design was illustrated. The illustrations are original and several computer simulations will be suggested.Keywords: computer simulations, geometric optics, physics education, students' misconceptions in physics
Procedia PDF Downloads 4093587 Scientific Theoretical Fundamentals of Comparative Analysis
Authors: Khalliyeva Gulnoz Iskandarovna, Mannonova Feruzabonu Sherali Qizi
Abstract:
A scientific field called comparative literature or literary comparative studies compares two or more literary phenomena. One of the most important scientific fields nowadays, when global social, cultural, and literary relations are growing daily, is comparative literature. Any comparative investigation reveals shared and unique characteristics of literary phenomena, which provide the cornerstone for the creation of overarching theoretical principles that apply to all literature. Comparative analysis consists of objects, and they are their constituents. For researchers, it is enough to know this. Comparative analysis, in addition to the above-mentioned actions, also focuses on comparing the components of the objects of analysis with each other. The purpose of this article is to investigate comparative analysis in literature and to identify similarities and differences between comparable objects. Students, teachers, and researchers should be able to describe comparative research techniques and their fundamental ideas when studying this topic. They should also have a basic understanding of comparative literature and their summary.Keywords: object, natural, social, spiritual, epistemological, logical, methodological, methodological, axiological tasks, stages of comparison, environment, internal features, and typical situations
Procedia PDF Downloads 643586 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding
Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng
Abstract:
Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding
Procedia PDF Downloads 3093585 Braiding Channel Pattern Due to Variation of Discharge
Authors: Satish Kumar, Spandan Sahu, Sarjati Sahoo, K. K. Khatua
Abstract:
An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions.Keywords: active braided intensity, bed load, sediment transport, shear stress, total braided intensity
Procedia PDF Downloads 1333584 Nonlinear Multivariable Analysis of CO2 Emissions in China
Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu
Abstract:
This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis
Procedia PDF Downloads 4063583 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 3753582 Concept Drifts Detection and Localisation in Process Mining
Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa
Abstract:
Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining
Procedia PDF Downloads 3513581 Causes of Financial Instability and Banking Crises: A Comparative Study of Analytical Approaches
Authors: Laura Josabeth Oros-Avilés, Josefina León-León
Abstract:
In recent decades, the concern of the monetary authorities has increased because of the instability of the financial sector caused by the crash of speculative bubbles. In fact, the crash of "housing bubble" in U.S. (2007-2008) led the latest global crisis. The aim of paper is to analyze the features and causes of the financial and banking crisis from an historical view. In particular, in this research, a comparative study of some analytical approaches about economic and financial history is discussed. In addition, the role of monetary policy of central banks in managing financial crises, from its origins to today, is analyzed. According to the studied approaches, two types of factors that cause the financial instability were identified: subjective and objectives. In the research, these factors are deeply discussed, in order to noting the agreements and disagreement between the authors. Specially, it is worth noting that all of them recognized that the credit boom and the financial deregulation are the main causes of financial crises.Keywords: asset prices, banking crises, financial bubble, financial instability, monetary policy
Procedia PDF Downloads 3343580 A Single Phase ZVT-ZCT Power Factor Correction Boost Converter
Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy
Abstract:
In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape.Keywords: power factor correction, zero-voltage transition, zero-current transition, soft switching
Procedia PDF Downloads 8043579 Diagnostic Investigation of Aircraft Performance at Different Winglet Cant Angles
Authors: M. Dinesh, V. Kenny Mark, Dharni Vasudhevan Venkatesan, B. Santhosh Kumar, R. Sree Radesh, V. R. Sanal Kumar
Abstract:
Comprehensive numerical studies have been carried out to examine the best aerodynamic performance of subsonic aircraft at different winglet cant angles using a validated 3D k-ω SST model. In the parametric analytical studies, NACA series of airfoils are selected. Basic design of the winglet is selected from the literature and flow features of the entire wing including the winglet tip effects have been examined with different cant angles varying from 150 to 600 at different angles of attack up to 140. We have observed, among the cases considered in this study that a case with 150 cant angle the aerodynamics performance of the subsonic aircraft during takeoff was found better up to an angle of attack of 2.80 and further its performance got diminished at higher angles of attack. Analyses further revealed that increasing the winglet cant angle from 150 to 600 at higher angles of attack could negate the performance deterioration and additionally it could enhance the peak CL/CD on the order of 3.5%. The investigated concept of variable-cant-angle winglets appears to be a promising alternative for improving the aerodynamic efficiency of aircraft.Keywords: aerodynamic efficiency, cant angle, drag reduction, flexible winglets
Procedia PDF Downloads 5263578 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1373577 3D Numerical Studies on External Aerodynamics of a Flying Car
Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar
Abstract:
The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane
Procedia PDF Downloads 4253576 Role of Physical Appearance in Associating People with a Group Identity
Authors: Gurleen Kaur
Abstract:
Being tall-short, fat-thin, black-white, etc. is an inevitable part of how people perceive you. This association of people with your external appearance carves out an identity for you. This paper will look at the reasons why people relate a person to a particular categorization on the basis of his/her physical appearance. The paper delves into reasons for this categorization into groups: Subconscious grouping, personal gain, ease of relating to the group, and social acceptance. Development of certain unique physical features also leads to a person relating himself to a collective identity. Thus, this paper will support the fact that physical appearance plays a crucial role in categorization of people into groups and hence forming a group identity for them. This paper is divided into three parts. The first part will discuss what physical appearance is and how is it linked to our daily lives. The second part will talk about why it works i.e. why this factor of external appearance is important in formation of identity. The last part will talk about the factors which lead to categorization of identity because of physical appearance.Keywords: group identity, physical appearance, subconscious grouping, collective identity
Procedia PDF Downloads 4213575 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation
Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki
Abstract:
Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity
Procedia PDF Downloads 1563574 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4533573 The Role of Homocysteine in Bone and Cartilage Regeneration
Authors: Arif İsmailov, Naila Hasanova, Gunay Orujalieva
Abstract:
Homocysteine (HCY) is an indicator of prognostic value in monitoring regenerative processes in osteoporosis and osteoporotic fractures. The osteoporosis is known to be a serious health and economic problem, especially for women in the postmenopausal period. The study was carried out on patients 45-83 years old divided into 3 groups: group I – 14 patients with osteoporosis , group II – 15 patients with non-osteoporotic fractures, group III – 25 patients with osteoporotic fractures. The control group consisted of practically healthy 14 people. A blood sample was taken at 3 stages to monitor the dynamics of HCY level: on the 1st day before treatment, on the 10th day of treatment and 1 month after it. Blood levels of Hcy were determined at a wavelength of 450 nm by the ELİSA(Cloud Clone Corp.Elisa kits,USA). The statistical evaluation was performed by using SPSS 26.0 program (IBM SPSS Inc., USA).The results showed that on the 1st day before the treatment HCY concentration was statistically increased 2.7 times(PU = 0.108) in group I, 5.6 times (PU <0.001) in group II and 6.5 times (PU <0.001) in group III compared to the control group. Thus, the average value of HCY in group I was 1.76 ± 0.56 μg/ml; in group II – 3.57 ± 0.62 μg/ml; in group III – 4.2 ± 0.50 μg/ml. HCY level increases more sharply after fractures,especially in osteoporotic patients. In treatment period Vitamin D plays an important role in synthesis of the Cystathionine β‐synthase enzyme, which regulates HCY metabolism. Increased Hcy levels could lead to an increase in the risk of fracture through the interference in collagen cross-linking.Keywords: homocysteine, osteoporosis, osteoporotic fractures, Vitamin D
Procedia PDF Downloads 653572 Modular Power Bus for Space Vehicles (MPBus)
Authors: Eduardo Remirez, Luis Moreno
Abstract:
The rapid growth of the private satellite launchers sector is leading the space race. Hence, with the privatization of the sector, all the companies are racing for a more efficient and reliant way to set satellites in orbit. Having detected the current needs for power management in the launcher vehicle industry, the Modular Power Bus is proposed as a technology to revolutionize power management in current and future Launcher Vehicles. The MPBus Project is committed to develop a new power bus architecture combining ejectable batteries with the main bus through intelligent nodes. These nodes are able to communicate between them and a battery controller using an improved, data over DC line technology, expected to reduce the total weight in two main areas: improving the use of the batteries and reducing the total weight due to harness. This would result in less weight for each launch stage increasing the operational satellite payload and reducing cost. These features make the system suitable for a number of launchers.Keywords: modular power bus, Launcher vehicles, ejectable batteries, intelligent nodes
Procedia PDF Downloads 4823571 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1673570 Fe-BTC Based Electrochemical Sensor for Anti-Psychotic and Anti-Migraine Drugs: Aripiprazole and Rizatriptan
Authors: Sachin Saxena, Manju Srivastava
Abstract:
The present study describes a stable, highly sensitive and selective analytical sensor. Fe-BTC was synthesized at room temperature using the noble Iron-trimesate system. The high surface area of as synthesized Fe-BTC proved MOFs as ideal modifiers for glassy carbon electrode. The characterization techniques such as TGA, XRD, FT-IR, BET (BET surface area= 1125 m2/gm) analysis explained the electrocatalytic behaviour of Fe-BTC towards these two drugs. The material formed is cost effective and exhibit higher catalytic behaviour towards analyte systems. The synergism between synthesized Fe-BTC and electroanalytical techniques helped in developing a highly sensitive analytical method for studying the redox fate of ARP and RZ, respectively. Cyclic voltammetry of ferricyanide system proved Fe-BTC/GCE with an increase in 132% enhancement in peak current value as compared to that of GCE. The response characteristics of cyclic voltammetry (CV) and square wave voltammetry (SWV) revealed that the ARP and RZ could be effectively accumulated at Fe-BTC/GCE. On the basis of the electrochemical measurements, electrode dynamics parameters have been evaluated. Present study opens up new field of applications of MOFs modified GCE for drug sensing.Keywords: MOFs, anti-psychotic, electrochemical sensor, anti-migraine drugs
Procedia PDF Downloads 1723569 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2923568 Networks, Regulations and Public Action: The Emerging Experiences of Sao Paulo
Authors: Lya Porto, Giulia Giacchè, Mario Aquino Alves
Abstract:
The paper aims to describe the linkage between government and civil society proposing a study on agro-ecological agriculture policy and urban action in São Paulo city underling the main achievements obtained. The negotiation processes between social movements and the government (inputs) and its results on political regulation and public action for Urban Agriculture (UA) in São Paulo city (outputs) have been investigated. The method adopted is qualitative, with techniques of semi-structured interviews, participant observation, and documental analysis. The authors conducted 30 semi-structured interviews with organic farmers, activists, governmental and non-governmental managers. Participant observation was conducted in public gardens, urban farms, public audiences, democratic councils, and social movements meetings. Finally, public plans and laws were also analyzed. São Paulo city with around 12 million inhabitants spread out in a 1522 km2 is the economic capital of Brazil, marked by spatial and socioeconomic segregation, currently aggravated by environmental crisis, characterized by water scarcity, pollution, and climate changes. In recent years, Urban Agriculture (UA) social movements gained strength and struggle for a different city with more green areas, organic food production, and public occupation. As the dynamics of UA occurs by the action of multiple actresses and institutions that struggle to build multiple senses on UA, the analysis will be based on literature about solidarity economy, governance, public action and networks. Those theories will mark out the analysis that will emphasize the approach of inter-subjectivity built between subjects, as well as the hybrid dynamics of multiple actors and spaces in the construction of policies for UA. Concerning UA we identified four main typologies based on land ownership, main function (economic or activist), form of organization of the space, and type of production (organic or not). The City Hall registers 500 productive unities of agriculture, with around 1500 producers, but researcher estimated a larger number of unities. Concerning the social movements we identified three categories that differ in goals and types of organization, but all of them work by networks of activists and/or organizations. The first category does not consider themselves as a movement, but a network. They occupy public spaces to grow organic food and to propose another type of social relations in the city. This action is similar to what became known as the green guerrillas. The second is configured as a movement that is structured to raise awareness about agro-ecological activities. The third one is a network of social movements, farmers, organizations and politicians that work focused on pressure and negotiation with executive and legislative government to approve regulations and policies on organic and agro-ecological Urban Agriculture. We conclude by highlighting how the interaction among institutions and civil society produced important achievements for recognition and implementation of UA within the city. Some results of this process are awareness for local production, legal and institutional recognition of the rural zone around the city into the planning tool, the investment on organic school public procurements, the establishment of participatory management of public squares, the inclusion of UA on Municipal Strategic Plan and Master Plan.Keywords: public action, policies, agroecology, urban and peri-urban agriculture, Sao Paulo
Procedia PDF Downloads 2983567 Acoustic and Thermal Compliance from the Execution Theory
Authors: Saou Mohamed Amine
Abstract:
The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. However, an overwhelming issue of existing non-energy efficient buildings which exceeds the number of new building could be ineffective if the buildings are not refurbished through the energy efficient measures. Thus, energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability that offers significant opportunities for reducing global energy consumption and greenhouse gas emissions. However, the quality of design team attributes and the characteristics of the refurbishment building projects have been argued to be the main factors that determine the energy efficiency performance of the building.Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics
Procedia PDF Downloads 3703566 Leverage Effect for Volatility with Generalized Laplace Error
Authors: Farrukh Javed, Krzysztof Podgórski
Abstract:
We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models
Procedia PDF Downloads 3883565 MICA-TM Peptide Selectively Binds to HLAs Associated with Behçet's Disease
Authors: Sirilak Kongkaew, Pathumwadee Yodmanee, Nopporn Kaiyawet, Arthitaya Meeprasert, Thanyada Rungrotmongkol, Toshikatsu Kaburaki, Hiroshi Noguchi, Fujio Takeuch, Nawee Kungwan, Supot Hannongbua
Abstract:
Behçet’s disease (BD) is a genetic autoimmune expressed by multisystemic inflammatory disorder mostly occurred at the skin, joints, gastrointestinal tract, and genitalia, including ocular, oral, genital, and central nervous systems. Most BD patients in Japan and Korea were strongly indicated by the genetic factor namely HLA-B*51 (especially, HLA-B*51:01) marker in HMC class I, while HLA-A*26:01 allele has been detected from the BD patients in Greek, Japan, and Taiwan. To understand the selective binding of the MICA-TM peptide towards the HLAs associated with BD, the molecular dynamics simulations were applied on the four HLA alleles (B*51:01, B*35:01, A*26:01, and A*11:01) in complex with such peptide. As a result, the key residues in the binding groove of HLA protein which play an important role in the MICA-TM peptide binding and stabilization were revealed. The Van der Waals force was found to be the main protein-protein interaction. Based on the binding free energy prediction by MM/PBSA method, the MICA-TM peptide interacted stronger to the HLA alleles associated to BD in the identical class by 7-12 kcal/mol. The obtained results from the present study could help to differentiate the HLA alleles and explain a source of Behçet’s disease.Keywords: Behçet’s disease, MD simulations, HMC class I, autoimmune
Procedia PDF Downloads 4023564 Geomagnetic Jerks Observed in Geomagnetic Observatory Data Over Southern Africa Between 2017 and 2023
Authors: Sanele Lionel Khanyile, Emmanuel Nahayo
Abstract:
Geomagnetic jerks are jumps observed in the second derivative of the main magnetic field that occurs on annual to decadal timescales. Understanding these jerks is crucial as they provide valuable insights into the complex dynamics of the Earth’s outer liquid core. In this study, we investigate the occurrence of geomagnetic jerks in geomagnetic observatory data collected at southern African magnetic observatories, Hermanus (HER), Tsumeb (TSU), Hartebeesthoek (HBK) and Keetmanshoop (KMH) between 2017 and 2023. The observatory data was processed and analyzed by retaining quiet night-time data recorded during quiet geomagnetic activities with the help of Kp, Dst, and ring current RC indices. Results confirm the occurrence of the 2019-2020 geomagnetic jerk in the region and identify the recent 2021 jerk detected with V-shaped secular variation changes in X and Z components at all four observatories. The highest estimated 2021 jerk secular acceleration amplitudes in X and Z components were found at HBK, 12.7 nT/year² and 19. 1 nT/year², respectively. Notably, the global CHAOS-7 model aptly identifies this 2021 jerk in the Z component at all magnetic observatories in the region.Keywords: geomagnetic jerks, secular variation, magnetic observatory data, South Atlantic Anomaly
Procedia PDF Downloads 843563 Ultra-High Precision Diamond Turning of Infrared Lenses
Authors: Khaled Abou-El-Hossein
Abstract:
The presentation will address the features of two IR convex lenses that have been manufactured using an ultra-high precision machining centre based on single-point diamond turning. The lenses are made from silicon and germanium with a radius of curvature of 500 mm. Because of the brittle nature of silicon and germanium, machining parameters were selected in such a way that ductile regime was achieved. The cutting speed was 800 rpm while the feed rate and depth cut were 20 mm/min and 20 um, respectively. Although both materials comprise a mono-crystalline microstructure and are quite similar in terms of optical properties, machining of silicon was accompanied with more difficulties in terms of form accuracy compared to germanium machining. The P-V error of the silicon profile was 0.222 um while it was only 0.055 um for the germanium lens. This could be attributed to the accelerated wear that takes place on the tool edge when turning mono-crystalline silicon. Currently, we are using other ranges of the machining parameters in order to determine their optimal range that could yield satisfactory performance in terms of form accuracy when fabricating silicon lenses.Keywords: diamond turning, optical surfaces, precision machining, surface roughness
Procedia PDF Downloads 320