Search results for: mechanical intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5100

Search results for: mechanical intelligence

900 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 58
899 Haptic Robotic Glove for Tele-Exploration of Explosive Devices

Authors: Gizem Derya Demir, Ilayda Yankilic, Daglar Karamuftuoglu, Dante Dorantes

Abstract:

ABSTRACT HAPTIC ROBOTIC GLOVE FOR TELE-EXPLORATION OF EXPLOSIVE DEVICES Gizem Derya Demir, İlayda Yankılıç, Dağlar Karamüftüoğlu, Dante J. Dorantes-González Department of Mechanical Engineering, MEF University Ayazağa Cad. No.4, 34396 Maslak, Sarıyer, İstanbul, Turkey Nowadays, terror attacks are, unfortunately, a more common threat around the world. Therefore, safety measures have become much more essential. An alternative to providing safety and saving human lives is done by robots, such as disassembling and liquidation of bombs. In this article, remote exploration and manipulation of potential explosive devices from a safe-distance are addressed by designing a novel, simple and ergonomic haptic robotic glove. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the haptic robotic glove and finger design. Angle controls of servo motors were made using ARDUINO® IDE codes on a Makeblock® MegaPi control card. Simple grasping dexterity solutions for the fingers were obtained using one linear soft and one angle sensors for each finger, and six servo motors are used in total to remotely control a slave multi-tooled robotic hand. This project is still undergoing and presents current results. Future research steps are also presented.

Keywords: Dexterity, Exoskeleton, Haptics , Position Control, Robotic Hand , Teleoperation

Procedia PDF Downloads 159
898 Comparison of Bone Mineral Density of Lumbar Spines between High Level Cyclists and Sedentary

Authors: Mohammad Shabani

Abstract:

The physical activities depending on the nature of the mechanical stresses they induce on bone sometimes have brought about different results. The purpose of this study was to compare bone mineral density (BMD) of the lumbar spine between the high-level cyclists and sedentary. Materials and Methods: In the present study, 73 cyclists senior (age: 25.81 ± 4.35 years; height: 179.66 ± 6.31 cm; weight: 71.55 ± 6.31 kg) and 32 sedentary subjects (age: 28.28 ± 4.52 years; height: 176.56 ± 6.2 cm; weight: 74.47 ± 8.35 kg) participated voluntarily. All cyclists belonged to the different teams from the International Cycling Union and they trained competitively for 10 years. BMD of the lumbar spine of the subjects was measured using DXA X-ray (Lunar). Descriptive statistics calculations were performed using computer software data processing (Statview 5, SAS Institute Inc. USA). The comparison of two independent distributions (BMD high level cyclists and sedentary) was made by the Student T Test standard. Probability 0.05 (p≤0 / 05) was adopted as significance. Results: The result of this study showed that the BMD values of the lumbar spine of sedentary subjects were significantly higher for all measured segments. Conclusion and Discussion: Cycling is firstly a common sport and on the other hand endurance sport. It is now accepted that weight bearing exercises have an osteogenic effect compared to non-weight bearing exercises. Thus, endurance sports such as cycling, compared to the activities imposing intense force in short time, seem not to really be osteogenic. Therefore, it can be concluded that cycling provides low stimulates osteogenic because of specific biomechanical forces of the sport and its lack of impact.

Keywords: BMD, lumbar spine, high level cyclist, cycling

Procedia PDF Downloads 258
897 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector

Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy

Abstract:

In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.

Keywords: four quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency (PRF), Atmega 32 microcontrollers

Procedia PDF Downloads 369
896 Ipsilateral Heterotopic Ossification in the Knee and Shoulder Post Long COVID-19

Authors: Raheel Shakoor Siddiqui, Calvin Mathias, Manikandar Srinivas Cheruvu, Bobin Varghese

Abstract:

A 58 year old gentleman presented to accident and emergency at the district general hospital with worsening shortness of breath and a non-productive cough over a period of five days. He was initially admitted under the medical team for suspicion of SARS-CoV-2 (COVID-19) pneumonitis. Subsequently, upon deterioration of observations and a positive COVID-19 PCR, he was taken to intensive care for invasive mechanical ventilation. He required frequent proning, inotropic support and was intubated for thirty-three days. After successful extubation, he developed myopathy with a limited range of motion to his right knee and right shoulder. Plain film imaging of these limbs demonstrated an unusual formation of heterotopic ossification without any precipitating trauma or surgery. Current literature demonstrates limited case series portraying heterotopic ossification post-COVID-19. There has been negligible evidence of heterotopic ossification in the ipsilateral knee and shoulder post-prolonged immobility secondary to a critical illness. Physiotherapy and rehabilitation are post-intensive care can be prolonged due to the formation of heterotopic ossification around joints. Prolonged hospital stays may lead to a higher risk of developing infections of the chest, urine and pressure sores. This raises the question of whether a severe systemic inflammatory immune response from the SARS-CoV-2 virus results in histopathological processes leading to the formation of heterotopic ossification not previously seen, requiring prolonged physiotherapy.

Keywords: orthopaedics, rehabilitation, physiotherapy, heterotopic ossification, COVID-19

Procedia PDF Downloads 63
895 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler

Authors: Srikanth Korla, Mahesh Sharnangat

Abstract:

Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.

Keywords: composite materials, moisture test, filler material, natural fibre composites

Procedia PDF Downloads 191
894 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration

Procedia PDF Downloads 280
893 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 300
892 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite

Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni

Abstract:

There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.

Keywords: CubeSat, nano-satellite, shock, testing, vibration

Procedia PDF Downloads 168
891 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems

Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify

Abstract:

Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.

Keywords: natural gas, power recovery, reduction stations, turboexpander systems

Procedia PDF Downloads 306
890 The Role of Metaheuristic Approaches in Engineering Problems

Authors: Ferzat Anka

Abstract:

Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.

Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems

Procedia PDF Downloads 65
889 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 427
888 Study on Temperature Distribution throughout the Continuous Casting Process of Copper Magnesium Alloys

Authors: Paweł Strzępek, Małgorzata Zasadzińska, Szymon Kordaszewski, Wojciech Ściężor

Abstract:

The constant tendency toward the materials properties improvement nowadays creates opportunities for the scientists, and furthermore the manufacturers all over the world to design, form and produce new alloys almost every day. Considering the fact that companies all over the world look for alloys with the highest values of mechanical properties coexisting with a reasonable electrical conductivity made it necessary to develop new materials based on copper, such as copper magnesium alloys with over 2 wt. % of Mg. Though, before such new material may be mass produced it must undergo a series of tests in order to determine the production technology and its parameters. The presented study is based on the numerical simulations calculated with the use of finite element method analysis, where the geometry of the cooling system, the material used to produce the cooling system and the surface quality of the graphite crystallizer at the place of contact with the cooling system and its influence on the temperatures throughout the continuous casting process is being investigated. The calculated simulations made it possible to propose the optimal set of equipment necessary for the continuous casting process to be carried out in laboratory conditions with various casting parameters and to determine basic materials properties of the obtained alloys such as hardness, electrical conductivity and homogeneity of the chemical composition. The authors are grateful for the financial support provided by The National Centre for Research and Development – Research Project No. LIDER/33/0121/L-11/19/NCBR/2020.

Keywords: CuMg alloys, continuous casting, temperature analysis, finite element method

Procedia PDF Downloads 196
887 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 142
886 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing

Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin

Abstract:

Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.

Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel

Procedia PDF Downloads 163
885 Modal Analysis of Functionally Graded Materials Plates Using Finite Element Method

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of an FGM plate composed of Al2O3 ceramic phase and 304 stainless steel metal phases was performed in this paper by ABAQUS software with the assumption that the behavior of material is elastic and mechanical properties (Young's modulus and density) are variable in the thickness direction of the plate. Therefore, a sub-program was written in FORTRAN programming language and was linked with ABAQUS software. For modal analysis, a finite element analysis was carried out similar to the model of other researchers and the accuracy of results was evaluated after comparing the results. Comparison of natural frequencies and mode shapes reflected the compatibility of results and optimal performance of the program written in FORTRAN as well as high accuracy of finite element model used in this research. After validation of the results, it was evaluated the effect of material (n parameter) on the natural frequency. In this regard, finite element analysis was carried out for different values of n and in simply supported mode. About the effect of n parameter that indicates the effect of material on the natural frequency, it was observed that the natural frequency decreased as n increased; because by increasing n, the share of ceramic phase on FGM plate has decreased and the share of steel phase has increased and this led to reducing stiffness of FGM plate and thereby reduce in the natural frequency. That is because the Young's modulus of Al2O3 ceramic is equal to 380 GPa and Young's modulus of SUS304 steel is 207 GPa.

Keywords: FGM plates, modal analysis, natural frequency, finite element method

Procedia PDF Downloads 382
884 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications

Authors: Mallikarjunachari Gangapuram

Abstract:

The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.

Keywords: hematite, hydrogel, nanoindentation, nano-DMA

Procedia PDF Downloads 184
883 Influence of Specimen Geometry (10*10*40), (12*12*60) and (5*20*120), on Determination of Toughness of Concrete Measurement of Critical Stress Intensity Factor: A Comparative Study

Authors: M. Benzerara, B. Redjel, B. Kebaili

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness is measured by a breaking value of the factor of the intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of the material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatic geometries different (10*10*40) Cm3, (12*12*60) Cm3 & (5*20*120) Cm3 containing from the side notches various depths simulating of the cracks was set up.The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the center of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometry specimen (5*20*120) Cm3, therefore, to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: concrete, fissure, specimen, toughness

Procedia PDF Downloads 289
882 Biodegradable Polymer Film Incorporated with Polyphenols for Active Packaging

Authors: Shubham Sharma, Swarna Jaiswal, Brendan Duffy, Amit Jaiswal

Abstract:

The key features of any active packaging film are its biodegradability and antimicrobial properties. Biological macromolecules such as polyphenols (ferulic acid (FA) and tannic acids (TA)) are naturally found in plants such as grapes, berries, and tea. In this study, antimicrobial activity screening of several polyphenols was carried out by using minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of gram-negative bacteria - Salmonella typhimurium, Escherichia coli, and two-gram positive strains - Staphylococcus aureus and Listeria monocytogenes. FA and TA had shown strong antibacterial activity at the low concentration against both gram-positive and gram-negative bacteria. The selected polyphenols FA and TA were incorporated at various concentrations (1%, 5%, and 10% w/w) in the poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) composite film by using the solvent casting method. The effect of TA and FA incorporation in the packaging was characterized based on morphological, optical, color, mechanical, thermal, and antimicrobial properties. The thickness of the FA composite film was increased by 1.5 – 7.2%, while for TA composite film, it increased by 0.018 – 1.6%. FA and TA (10 wt%) composite film had shown approximately 65% - 66% increase in the UV barrier property. As the FA and TA concentration increases from 1% - 10% (w/w), the TS value increases by 1.98 and 1.80 times, respectively. The water contact angle of the film was observed to decrease significantly with the increase in the FA and TA content in the composite film. FA has shown more significant increase in antimicrobial activity than TA in the composite film against Listeria monocytogenes and E. coli. The FA and TA composite film has the potential for its application as an active food packaging.

Keywords: active packaging, biodegradable film, polyphenols, UV barrier, tensile strength

Procedia PDF Downloads 141
881 Elements of Creativity and Innovation

Authors: Fadwa Al Bawardi

Abstract:

In March 2021, the Saudi Arabian Council of Ministers issued a decision to form a committee called the "Higher Committee for Research, Development and Innovation," a committee linked to the Council of Economic and Development Affairs, chaired by the Chairman of the Council of Economic and Development Affairs, and concerned with the development of the research, development and innovation sector in the Kingdom. In order to talk about the dimensions of this wonderful step, let us first try to answer the following questions. Is there a difference between creativity and innovation..? What are the factors of creativity in the individual. Are they mental genetic factors or are they factors that an individual acquires through learning..? The methodology included surveys that have been conducted on more than 500 individuals, males and females, between the ages of 18 till 60. And the answer is. "Creativity" is the creation of a new idea, while "Innovation" is the development of an already existing idea in a new, successful way. They are two sides of the same coin, as the "creative idea" needs to be developed and transformed into an "innovation" in order to achieve either strategic achievements at the level of countries and institutions to enhance organizational intelligence, or achievements at the level of individuals. For example, the beginning of smart phones was just a creative idea from IBM in 1994, but the actual successful innovation for the manufacture, development and marketing of these phones was through Apple later. Nor does creativity have to be hereditary. There are three basic factors for creativity: The first factor is "the presence of a challenge or an obstacle" that the individual faces and seeks thinking to find solutions to overcome, even if thinking requires a long time. The second factor is the "environment surrounding" of the individual, which includes science, training, experience gained, the ability to use techniques, as well as the ability to assess whether the idea is feasible or otherwise. To achieve this factor, the individual must be aware of own skills, strengths, hobbies, and aspects in which one can be creative, and the individual must also be self-confident and courageous enough to suggest those new ideas. The third factor is "Experience and the Ability to Accept Risk and Lack of Initial Success," and then learn from mistakes and try again tirelessly. There are some tools and techniques that help the individual to reach creative and innovative ideas, such as: Mind Maps tool, through which the available information is drawn by writing a short word for each piece of information and arranging all other relevant information through clear lines, which helps in logical thinking and correct vision. There is also a tool called "Flow Charts", which are graphics that show the sequence of data and expected results according to an ordered scenario of events and workflow steps, giving clarity to the ideas, their sequence, and what is expected of them. There are also other great tools such as the Six Hats tool, a useful tool to be applied by a group of people for effective planning and detailed logical thinking, and the Snowball tool. And all of them are tools that greatly help in organizing and arranging mental thoughts, and making the right decisions. It is also easy to learn, apply and use all those tools and techniques to reach creative and innovative solutions. The detailed figures and results of the conducted surveys are available upon request, with charts showing the %s based on gender, age groups, and job categories.

Keywords: innovation, creativity, factors, tools

Procedia PDF Downloads 44
880 Observation of the Orthodontic Tooth's Long-Term Movement Using Stereovision System

Authors: Hao-Yuan Tseng, Chuan-Yang Chang, Ying-Hui Chen, Sheng-Che Chen, Chih-Han Chang

Abstract:

Orthodontic tooth treatment has demonstrated a high success rate in clinical studies. It has been agreed upon that orthodontic tooth movement is based on the ability of surrounding bone and periodontal ligament (PDL) to react to a mechanical stimulus with remodeling processes. However, the mechanism of the tooth movement is still unclear. Recent studies focus on the simple principle compression-tension theory while rare studies directly measure tooth movement. Therefore, tracking tooth movement information during orthodontic treatment is very important in clinical practice. The aim of this study is to investigate the mechanism responses of the tooth movement during the orthodontic treatments. A stereovision system applied to track the tooth movement of the patient with the stamp brackets. The system was established by two cameras with their relative position calibrate. And the orthodontic force measured by 3D printing model with the six-axis load cell to determine the initial force application. The result shows that the stereovision system accuracy revealed the measurement presents a maximum error less than 2%. For the study on patient tracking, the incisor moved about 0.9 mm during 60 days tracking, and half of movement occurred in the first few hours. After removing the orthodontic force in 100 hours, the distance between before and after position incisor tooth decrease 0.5 mm consisted with the release of the phenomenon. Using the stereovision system can accurately locate the three-dimensional position of the teeth and superposition of 3D coordinate system for all the data to integrate the complex tooth movement.

Keywords: orthodontic treatment, tooth movement, stereovision system, long-term tracking

Procedia PDF Downloads 408
879 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 206
878 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 76
877 Localising the Alien: Language, Literature and Theory in the Indian Classroom

Authors: Asima Ranjan Parhi

Abstract:

English language teaching-learning in higher education departments in Indian and Asian contexts needs to be one of innovation and experimentation rather than rigid prescription. The communicative language teaching has been proposing the context to be of primary importance in this process. Today, English print and electronic media have flooded the market with plenty of material suitable to the classroom context. The entries are poetic, catchy and contain a deliberate method in them which could be utilized to teach not only English language but literature, literary terms and the theory of literature. The Bollywood movies, especially through their songs have been propagating a package which may be useful to teach language and even theory in the sub-continent. While investigating, one may be fascinated to see how such material in the body of media (print and electronic), movies and popular songs generate a data for our classroom in our context, thereby developing a mass language with huge pedagogical implications. Harping on the four skills of teaching and learning of a language in general and English language in particular appears stale and mechanical in a decontextualised, matter of fact classroom. So this discussion visualizes a model beyond these skills as well as the conventional theory, literature, language classroom practices in order to build up a systematic pattern stressing the factors responsible in the particular context, that of specific language, society and culture in tune with language-literature teaching. This study intends to examine certain catchy use of the language entries in mass media which could be in the direction of inviting more such investigations in the Asian context in order to develop a common platform of decolonized pedagogy.

Keywords: pedagogy, electronic media, Bollywood, decolonized, mass media

Procedia PDF Downloads 265
876 Geopolymer Concrete: A Review of Properties, Applications and Limitations

Authors: Abbas Ahmed Albu Shaqraa

Abstract:

The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.

Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength

Procedia PDF Downloads 205
875 Multi-objective Rationality Optimisation for Robotic-fabrication-oriented Free-form Timber Structure Morphology Design

Authors: Yiping Meng, Yiming Sun

Abstract:

The traditional construction industry is unable to meet the requirements for novel fabrication and construction. Automated construction and digital design have emerged as industry development trends that compensate for this shortcoming under the backdrop of Industrial Revolution 4.0. Benefitting from more flexible working space and more various end-effector tools compared to CNC methods, robot fabrication and construction techniques have been used in irregular architectural design. However, there is a lack of a systematic and comprehensive design and optimisation workflow considering geometric form, material, and fabrication methods. This paper aims to propose a design optimisation workflow for improving the rationality of a free-form timber structure fabricated by the robotic arm. Firstly, the free-form surface is described by NURBS, while its structure is calculated using the finite element analysis method. Then, by considering the characteristics and limiting factors of robotic timber fabrication, strain energy and robustness are set as optimisation objectives to optimise structural morphology by gradient descent method. As a result, an optimised structure with axial force as the main force and uniform stress distribution is generated after the structure morphology optimisation process. With the decreased strain energy and the improved robustness, the generated structure's bearing capacity and mechanical properties have been enhanced. The results prove the feasibility and effectiveness of the proposed optimisation workflow for free-form timber structure morphology design.

Keywords: robotic fabrication, free-form timber structure, Multi-objective optimisation, Structural morphology, rational design

Procedia PDF Downloads 183
874 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 154
873 A Study on the Treatment of Municipal Waste Water Using Sequencing Batch Reactor

Authors: Bhaven N. Tandel, Athira Rajeev

Abstract:

Sequencing batch reactor process is a suspended growth process operating under non-steady state conditions which utilizes a fill and draw reactor with complete mixing during the batch reaction step (after filling) and where the subsequent steps of aeration and clarification occur in the same tank. All sequencing batch reactor systems have five steps in common, which are carried out in sequence as follows, (1) fill (2) react (3) settle (sedimentation/clarification) (4) draw (decant) and (5) idle. The study was carried out in a sequencing batch reactor of dimensions 44cmx30cmx70cm with a working volume of 40 L. Mechanical stirrer of 100 rpm was used to provide continuous mixing in the react period and oxygen was supplied by fish tank aerators. The duration of a complete cycle of sequencing batch reactor was 8 hours. The cycle period was divided into different phases in sequence as follows-0.25 hours fill phase, 6 hours react period, 1 hour settling phase, 0.5 hours decant period and 0.25 hours idle phase. The study consisted of two runs, run 1 and run 2. Run 1 consisted of 6 hours aerobic react period and run 2 consisted of 3 hours aerobic react period followed by 3 hours anoxic react period. The influent wastewater used for the study had COD, BOD, NH3-N and TKN concentrations of 308.03±48.94 mg/L, 100.36±22.05 mg/L, 14.12±1.18 mg/L, and 24.72±2.21 mg/L respectively. Run 1 had an average COD removal efficiency of 41.28%, BOD removal efficiency of 56.25%, NH3-N removal efficiency of 86.19% and TKN removal efficiency of 54.4%. Run 2 had an average COD removal efficiency of 63.19%, BOD removal efficiency of 73.85%, NH3-N removal efficiency of 90.74% and TKN removal efficiency of 65.25%. It was observed that run 2 gave better performance than run 1 in the removal of COD, BOD and TKN.

Keywords: municipal waste water, aerobic, anoxic, sequencing batch reactor

Procedia PDF Downloads 532
872 Leveraging Advanced Technologies and Data to Eliminate Abandoned, Lost, or Otherwise Discarded Fishing Gear and Derelict Fishing Gear

Authors: Grant Bifolchi

Abstract:

As global environmental problems continue to have highly adverse effects, finding long-term, sustainable solutions to combat ecological distress are of growing paramount concern. Ghost Gear—also known as abandoned, lost or otherwise discarded fishing gear (ALDFG) and derelict fishing gear (DFG)—represents one of the greatest threats to the world’s oceans, posing a significant hazard to human health, livelihoods, and global food security. In fact, according to the UN Food and Agriculture Organization (FAO), abandoned, lost and discarded fishing gear represents approximately 10% of marine debris by volume. Around the world, many governments, governmental and non-profit organizations are doing their best to manage the reporting and retrieval of nets, lines, ropes, traps, floats and more from their respective bodies of water. However, these organizations’ ability to effectively manage files and documents about the environmental problem further complicates matters. In Ghost Gear monitoring and management, organizations face additional complexities. Whether it’s data ingest, industry regulations and standards, garnering actionable insights into the location, security, and management of data, or the application of enforcement due to disparate data—all of these factors are placing massive strains on organizations struggling to save the planet from the dangers of Ghost Gear. In this 90-minute educational session, globally recognized Ghost Gear technology expert Grant Bifolchi CET, BBA, Bcom, will provide real-world insight into how governments currently manage Ghost Gear and the technology that can accelerate success in combatting ALDFG and DFG. In this session, attendees will learn how to: • Identify specific technologies to solve the ingest and management of Ghost Gear data categories, including type, geo-location, size, ownership, regional assignment, collection and disposal. • Provide enhanced access to authorities, fisheries, independent fishing vessels, individuals, etc., while securely controlling confidential and privileged data to globally recognized standards. • Create and maintain processing accuracy to effectively track ALDFG/DFG reporting progress—including acknowledging receipt of the report and sharing it with all pertinent stakeholders to ensure approvals are secured. • Enable and utilize Business Intelligence (BI) and Analytics to store and analyze data to optimize organizational performance, maintain anytime-visibility of report status, user accountability, scheduling, management, and foster governmental transparency. • Maintain Compliance Reporting through highly defined, detailed and automated reports—enabling all stakeholders to share critical insights with internal colleagues, regulatory agencies, and national and international partners.

Keywords: ghost gear, ALDFG, DFG, abandoned, lost or otherwise discarded fishing gear, data, technology

Procedia PDF Downloads 83
871 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy

Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu

Abstract:

Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.

Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy

Procedia PDF Downloads 243