Search results for: leafy green processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5738

Search results for: leafy green processing

1538 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 38
1537 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform

Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr

Abstract:

Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.

Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing

Procedia PDF Downloads 84
1536 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production

Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga

Abstract:

The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.

Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets

Procedia PDF Downloads 408
1535 Use of Polymeric Materials in the Architectural Preservation

Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour

Abstract:

These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.

Keywords: blend, PVDF, PMMA, preservation, historic monuments

Procedia PDF Downloads 308
1534 Comparative Therapeutic Potential of 'Green Synthesized' Antimicrobials against Scalp Infections

Authors: D. Desai, J.Dixon, N. Jain, M. Datta

Abstract:

Microbial infections of scalp consist of symptomatic appearances associated with seborrhoeic dermatitis, folliculitis, furuncles, carbuncles and ringworm. The main causative organisms in these scalp-based infections are bacteria like S. aureus, P. aeruginosa and a fungus M. Furfur. Allopathic treatment of these infections is available and efficient, but occasionally, topical applications have been found to cause side effects. India is known as the botanical garden of the world and considered as the epicentre for utilization of traditional drugs. Many treatments based on herb extracts are commonly used in India. It has been observed treatment with ethnomedicines requires a higher dosage and greater time period. Additionally, repeated applications are required to obtain the full efficacy of the treatment. An attempt has been made to imbibe the traditional knowledge with nanotechnology to generate a proficient therapeutic against scalp infections. We have imbibed metallic nanoparticles with extracts from traditional medicines and propose to formulate an antimicrobial hair massager. Four commonly used herbs for treatment against scalp disorders like Zingiber officinale (ginger), Allium sativum (garlic), Azadirachta indica (neem) leaves and Citrus limon (lemon) peel was taken. 30 gms of dried homogenized powder was obtained and processed for obtaining the aqueous and ethanolic extract by soxhlet apparatus. The extract was dried and reconstituted to obtain working solution of 1mg/ml. Phytochemical analysis for the obtained extract was done. Synthesis of nanoparticles was mediated by incubating 1mM silver nitrate with extracts of various herbs to obtain silver nanoparticles. The formation of the silver nanoparticles (AgNPs) was monitored using UV-Vis spectroscopy. The AgNPs thus obtained were centrifuged and dried. The AgNPs thus formed were characterized by X Ray Diffraction, scanning electron microscopy and transmission electron microscopy. The size of the AgNPs varied from 10-20 nm and was spherical in shape. P. aeruginosa was plated on nutrient agar and comparative antibacterial activity was tested. Comparative antimicrobial potential was calculated for the extracts and the corresponding nanoconstructs. It was found AgNPs were more efficient than their aqueous and ethanolic counterparts except in the ase of C. limon. Statistical analysis was performed to validate the results obtained.

Keywords: ethnomedicine, nanoconstructs, scalp infections, Zingiber officinale

Procedia PDF Downloads 367
1533 Adaptation of Extra Early Maize 'Zea Mays L.' Varieties for Climate Change Mitigation in South Western Nigeria

Authors: Akinwumi Omotayo, Badu-B Apraku, Joseph Olobasola, Petra Abdul Saghir, Yinka Sobowale

Abstract:

In southwestern Nigeria, climate change has led to loss of at least two months of rainfall. Consequently, only one cycle of maize can now be grown because of the shorter duration of rainy season as against two cycles in the past. The Early and Extra-early maturing varieties of maize were originally developed for the semi-arid and arid zones of West and Central Africa where there are seasonal challenges of water threatening optimum performance of the traditional maize grown, which are commonly late in maturity (115 to 120 days). The early varieties of maize mature in 90 to 95 days; while the Extra-Early maize varieties reach physiological maturity in less than 90 days. It was broadly hypothesized that the extra early varieties of maize could mitigate the effects of climate change in southwestern Nigeria with higher levels of rainfall by reinstating the original two cycles of rain-fed maize crop. Trials were therefore carried out in southwestern Nigeria on the possibility of adapting the extra early maize to mitigate the effects of climate change. The trial was the Mother/Baby design. The mother trial involves the evaluation of extra-early varieties following ideal recommendations and closely supervised centrally at the University research farm and the Agricultural Development Programmes (ADPs). This requires farmers to observe and evaluate the technology and the management regime meant to precede the second stage of evaluation at several satellite farmers field managed by selected farmers. The Baby Trial is expected to provide a realistic assessment of the technology by farmers in their own environment. A stratified selection of thirty farmers for the Baby Trial ensured appropriate representation across the different categories of the farming population by age and gender. Data from the trials indicate that extra early maize can be grown in two cycles rain fed in south west Nigeria and a third and fourth cycle could be obtained with irrigation. However the long duration varieties outyielded the extra early maize in both the mother and baby trials. When harvested green, the extra early maize served as source of food between March and May when there was scarcity of food. This represents a major advantage. The study recommends that further work needs to be done to improve the yield of extra early maize to encourage farmers to adopt.

Keywords: adaptation, climate change, extra early, maize varieties, mitigation

Procedia PDF Downloads 200
1532 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 385
1531 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore

Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska

Abstract:

— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.

Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis

Procedia PDF Downloads 23
1530 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
1529 Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes

Authors: Lotfi Khiari, Antoine Karam, Claude-Alla Joseph, Marc Hébert

Abstract:

The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low.

Keywords: biosolids, heavy metals, recycling, sewage sludge

Procedia PDF Downloads 379
1528 Investigations of the Crude Oil Distillation Preheat Section in Unit 100 of Abadan Refinery and Its Recommendation

Authors: Mahdi GoharRokhi, Mohammad H. Ruhipour, Mohammad R. ZamaniZadeh, Mohsen Maleki, Yusef Shamsayi, Mahdi FarhaniNejad, Farzad FarrokhZadeh

Abstract:

Possessing massive resources of natural gas and petroleum, Iran has a special place among all other oil producing countries, according to international institutions of energy. In order to use these resources, development and functioning optimization of refineries and industrial units is mandatory. Heat exchanger is one of the most important and strategic equipment which its key role in the process of production is clear to everyone. For instance, if the temperature of a processing fluid is not set as needed by heat exchangers, the specifications of desired product can change profoundly. Crude oil enters a network of heat exchangers in atmospheric distillation section before getting into the distillation tower; in this case, well-functioning of heat exchangers can significantly affect the operation of distillation tower. In this paper, different scenarios for pre-heating of oil are studied using oil and gas simulation software, and the results are discussed. As we reviewed various scenarios, adding a heat exchanger to pre-heating network is proposed as the most efficient factor in improving all governing parameters of the tower i.e. temperature, pressure, and reflux rate. This exchanger is embedded in crude oil’s path. Crude oil enters the exchanger after E-101 and exchanges heat with discharging kerosene pump around from E-136. As depicted in the results, it will efficiently assist the improvement of process operation and side expenses.

Keywords: atmospheric distillation unit, heat exchanger, preheat, simulation

Procedia PDF Downloads 658
1527 Attention Deficit Disorders (ADD) among Stressed Pre-NCE Students in Federal College of Education, Kano-Nigeria

Authors: A. S. Haruna, M. L. Mayanchi

Abstract:

Pre Nigeria Certificate in Education otherwise called Pre-NCE is an intensive two semester course designed to assist candidates who could not meet the requirements for admission into NCE programme. The task of coping with the stressors in the course can interfere with the students’ ability to regulate attention skills and stay organized. The main objectives of the study were to find out the prevalence of stress; determine the association between stress and ADD and reveal gender difference in the prevalence of ADD among stressed pre-NCE students. Cross–Sectional Correlation Design was employed in which 333 (Male=65%; Female=35%) students were proportionately sampled and administered Stress Assessment Scale [SAS r=0.74) and those identified with stress were thereafter rated with Cognitive Processing Inventory [CPI]. Data collected was used to analyze the three null hypotheses through One-sample Kolmogorov-Smirnov (K-S) Z-score, Pearson Product Moment Correlation Coefficients (PPMCC) and t-test statistics respectively at 0.05 confidence level. Results revealed significant prevalence of stress [Z-calculated =2.24; Z-critical = ±1.96], and a positive relationship between Stress and ADD among Pre-NCE students [r-calculated =0.450; r-critical =0.138]. However, there was no gender difference in the prevalence of ADD among stressed Pre-NCE students in the college [t-calculated =1.49; t-critical =1.645]. The study concludes that while stress and ADD prevail among pre-NCE students, there was no gender difference in the prevalence of ADD. Recommendations offered suggest the use of Learners Assistance Programs (LAP) for stress management, and Teacher-Students ratio of 1:25 be adopted in order to cater for stressed pre-NCE students with ADD.

Keywords: attention deficit disorder, pre-NCE students, stress, Pearson Product Moment Correlation Coefficients (PPMCC)

Procedia PDF Downloads 241
1526 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
1525 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 86
1524 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components

Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler

Abstract:

Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.

Keywords: case study, internet of things, predictive maintenance, reference architecture

Procedia PDF Downloads 246
1523 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 72
1522 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 151
1521 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 123
1520 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment

Authors: Khamdan Cahyari, Pratikno Hidayat

Abstract:

Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.

Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion

Procedia PDF Downloads 580
1519 Reconfigurable Device for 3D Visualization of Three Dimensional Surfaces

Authors: Robson da C. Santos, Carlos Henrique de A. S. P. Coutinho, Lucas Moreira Dias, Gerson Gomes Cunha

Abstract:

The article refers to the development of an augmented reality 3D display, through the control of servo motors and projection of image with aid of video projector on the model. Augmented Reality is a branch that explores multiple approaches to increase real-world view by viewing additional information along with the real scene. The article presents the broad use of electrical, electronic, mechanical and industrial automation for geospatial visualizations, applications in mathematical models with the visualization of functions and 3D surface graphics and volumetric rendering that are currently seen in 2D layers. Application as a 3D display for representation and visualization of Digital Terrain Model (DTM) and Digital Surface Models (DSM), where it can be applied in the identification of canyons in the marine area of the Campos Basin, Rio de Janeiro, Brazil. The same can execute visualization of regions subject to landslides, as in Serra do Mar - Agra dos Reis and Serranas cities both in the State of Rio de Janeiro. From the foregoing, loss of human life and leakage of oil from pipelines buried in these regions may be anticipated in advance. The physical design consists of a table consisting of a 9 x 16 matrix of servo motors, totalizing 144 servos, a mesh is used on the servo motors for visualization of the models projected by a retro projector. Each model for by an image pre-processing, is sent to a server to be converted and viewed from a software developed in C # Programming Language.

Keywords: visualization, 3D models, servo motors, C# programming language

Procedia PDF Downloads 340
1518 The Effect of Configuration Space and Visual Perception in Public Space Usage at Villa Bukit Tidar Housing in Malang City

Authors: Aisyiyah Fauziah Rahmah

Abstract:

Generally, an urban city has a rapid growth, it has frequent a variety of problems, especially of convenience in public space usage. The density of population in urban areas and the high activity is also indicated as a cause of urban resident lifestyle for the worse in social relationships and allow for the stress. Streets and green space (parks) are the only public space in a residential area which is used as a place to build social activity, to meet and interact with the other housing dweller. The high level of activity and social interaction that occurs will affect the spatial arrangement. It can be effected the space structures in housing more complex. Ease in access to public space is the reason many dweller prefer doing social activities there. Hillier in Carmona et al (2003) explains that the pattern and intensity of movement of individuals is influenced by the configuration of space, even the space structure can be regarded as the single most influential determinant of movements in the space. Whyte in Zhang and Lawson (2009) also suggest some factors such as seats, trees, water and legibility of space encourage people to stay in public outdoor space. Furthermore this activities can attract more activities. Villa Bukit Tidar is a housing in Lowokwaru District which highest number of people in Malang City, so social activity is also high there. It has natural and recreational concept and provided with view of Malang City from heights. This potential is able to attract the people who live there to stay in public outdoor space and doing activities there. From this study we can find whether the ease of access to public space and visual satisfaction of Villa Bukit Tidar housing affect the usage of public space. This study was carried out by observing the streets pattern and plot pattern to know the configuration space of Villa Bukit Tidar housing through values of connectivity and integrity by resulting from space sintax analysis. Distributing questionnaires also carried out to determine the level of satisfaction and importance perception of visual condition in the public space in Villa Bukit Tidar housing through Important Performance Analysis (IPA). Results of this research indicated that the public spaces in Villa Bukit Tidar housing who has high connectivity and integrity is considered to be visually satisfied and it has a higher public space usage than has low connectivity and integrity are considered to be visually dissatisfied.

Keywords: configuration space, visual perception, social activities, public space usage

Procedia PDF Downloads 491
1517 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer

Authors: Rhea Kapoor

Abstract:

Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.

Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension

Procedia PDF Downloads 176
1516 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles

Procedia PDF Downloads 110
1515 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising

Authors: Jianwei Ma, Diriba Gemechu

Abstract:

In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.

Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm

Procedia PDF Downloads 206
1514 Anti-Nutritional Factors, In-Vitro Trypsin, Chymotrypsin and Peptidase Multi Enzyme Protein Digestibility of Some Melon (Egusi) Seeds and Their Protein Isolates

Authors: Joan O. Ogundele, Aladesanmi A. Oshodi, Adekunle I. Amoo

Abstract:

Abstract In-vitro multi-enzyme protein digestibility (IVMPD) and some anti-nutritional factors (ANF) of five melon (egusi) seed flours (MSF) and their protein isolates (PI) were carried out. Their PI have potentials comparable to that of soya beans. It is important to know the IVMPD and ANF of these protein sources as to ensure their safety when adapted for use as alternate protein sources to substitute for cow milk, which is relatively expensive in Nigeria. Standard methods were used to produce PI of Citrullus colocynthis, Citrullus vulgaris, African Wine Kettle gourd (Lageneria siceraria I), Basket Ball gourd (Lagenaria siceraria II) and Bushel Giant Gourd (Lageneria siceraria III) seeds and to determine the ANF and IVMPD of the MSF and PI unheated and at 37oC. Multi-enzymes used were trypsin, chymotrypsin and peptidase. IVMPD of MSF ranged from (70.67±0.70) % (C. vulgaris) to (72.07± 1.79) % (L.siceraria I) while for their PI ranged from 74.33% (C.vulgaris) to 77.55% (L.siceraria III). IVMPD of the PI were higher than those of MSF. Heating increased IVMPD of MSF with average value of 79.40% and those of PI with average of 84.14%. ANF average in MSF are tannin (0.11mg/g), phytate (0.23%). Differences in IVMPD of MSF and their PI at different temperatures may arise from processing conditions that alter the release of amino acids from proteins by enzymatic processes. ANF in MSF were relatively low, but were found to be lower in the PI, therefor making the PI safer for human consumption as an alternate source of protein.

Keywords: Anti-nutrients, Enzymatic protein digestibility, Melon (egusi)., Protein Isolates.

Procedia PDF Downloads 119
1513 Treatment of Leather Industry Wastewater with Advance Treatment Methods

Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal

Abstract:

Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.

Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater

Procedia PDF Downloads 158
1512 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands

Authors: Ross J. Maestas

Abstract:

Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.

Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands

Procedia PDF Downloads 327
1511 Electrodeposition and Selenization of Cuin Alloys for the Synthesis of Photoactive Cu2in1-X Gax Se2 (Cigs) Thin Films

Authors: Mohamed Benaicha, Mahdi Allam

Abstract:

A new two stage electrochemical process as a safe, large area and low processing cost technique for the production of semi-conducting CuInSe2 (CIS) thin films is studied. CuIn precursors were first potentiostatically electrodeposited onto molybdenum substrates from an acidic thiocyanate electrolyte. In a second stage, the prepared metallic CuIn layers were used as substrate in the selenium electrochemical deposition system and subjected to a thermal treatment in vacuum atmosphere, to eliminate binary phase formation by reaction of the Cu2-x Se and InxSey selenides, leading to the formation of CuInSe2 thin film. Electrochemical selenization from aqueous electrolyte is introduced as an alternative to toxic and hazardous H2Se or Se vapor phase selenization used in physical techniques. In this study, the influence of film deposition parameters such as bath composition, temperature and potential on film properties was studied. The electrochemical, morphological, structural and compositional properties of electrodeposited thin films were characterized using various techniques. Results of Cyclic and Stripping-Cyclic Voltammetry (CV, SCV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray microanalysis (EDX) investigations revealed good reproducibility and homogeneity of the film composition. Thereby optimal technological parameters for the electrochemical production of CuIn, Se as precursors for CuInSe2 thin layers are determined.

Keywords: photovoltaic, CIGS, copper alloys, electrodeposition, thin films

Procedia PDF Downloads 461
1510 Using Autoencoder as Feature Extractor for Malware Detection

Authors: Umm-E-Hani, Faiza Babar, Hanif Durad

Abstract:

Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.

Keywords: malware, auto encoders, automated feature engineering, classification

Procedia PDF Downloads 71
1509 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.

Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid

Procedia PDF Downloads 501