Search results for: nanoconstructs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: nanoconstructs

4 Comparative Therapeutic Potential of 'Green Synthesized' Antimicrobials against Scalp Infections

Authors: D. Desai, J.Dixon, N. Jain, M. Datta

Abstract:

Microbial infections of scalp consist of symptomatic appearances associated with seborrhoeic dermatitis, folliculitis, furuncles, carbuncles and ringworm. The main causative organisms in these scalp-based infections are bacteria like S. aureus, P. aeruginosa and a fungus M. Furfur. Allopathic treatment of these infections is available and efficient, but occasionally, topical applications have been found to cause side effects. India is known as the botanical garden of the world and considered as the epicentre for utilization of traditional drugs. Many treatments based on herb extracts are commonly used in India. It has been observed treatment with ethnomedicines requires a higher dosage and greater time period. Additionally, repeated applications are required to obtain the full efficacy of the treatment. An attempt has been made to imbibe the traditional knowledge with nanotechnology to generate a proficient therapeutic against scalp infections. We have imbibed metallic nanoparticles with extracts from traditional medicines and propose to formulate an antimicrobial hair massager. Four commonly used herbs for treatment against scalp disorders like Zingiber officinale (ginger), Allium sativum (garlic), Azadirachta indica (neem) leaves and Citrus limon (lemon) peel was taken. 30 gms of dried homogenized powder was obtained and processed for obtaining the aqueous and ethanolic extract by soxhlet apparatus. The extract was dried and reconstituted to obtain working solution of 1mg/ml. Phytochemical analysis for the obtained extract was done. Synthesis of nanoparticles was mediated by incubating 1mM silver nitrate with extracts of various herbs to obtain silver nanoparticles. The formation of the silver nanoparticles (AgNPs) was monitored using UV-Vis spectroscopy. The AgNPs thus obtained were centrifuged and dried. The AgNPs thus formed were characterized by X Ray Diffraction, scanning electron microscopy and transmission electron microscopy. The size of the AgNPs varied from 10-20 nm and was spherical in shape. P. aeruginosa was plated on nutrient agar and comparative antibacterial activity was tested. Comparative antimicrobial potential was calculated for the extracts and the corresponding nanoconstructs. It was found AgNPs were more efficient than their aqueous and ethanolic counterparts except in the ase of C. limon. Statistical analysis was performed to validate the results obtained.

Keywords: ethnomedicine, nanoconstructs, scalp infections, Zingiber officinale

Procedia PDF Downloads 351
3 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs

Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee

Abstract:

Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.

Keywords: antibiotic resistance, copper, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine, silver, tetracycline

Procedia PDF Downloads 177
2 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles

Authors: Gyati Shilakari Asthana, Abhay Asthana

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 477
1 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 829