Search results for: suckling mice
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 534

Search results for: suckling mice

144 Exploiting the Tumour Microenvironment in Order to Optimise Sonodynamic Therapy for Cancer

Authors: Maryam Mohammad Hadi, Heather Nesbitt, Hamzah Masood, Hashim Ahmed, Mark Emberton, John Callan, Alexander MacRobert, Anthony McHale, Nikolitsa Nomikou

Abstract:

Sonodynamic therapy (SDT) utilises ultrasound in combination with sensitizers, such as porphyrins, for the production of cytotoxic reactive oxygen species (ROS) and the confined ablation of tumours. Ultrasound can be applied locally, and the acoustic waves, at frequencies between 0.5-2 MHz, are transmitted efficiently through tissue. SDT does not require highly toxic agents, and the cytotoxic effect only occurs upon ultrasound exposure at the site of the lesion. Therefore, this approach is not associated with adverse side effects. Further highlighting the benefits of SDT, no cancer cell population has shown resistance to therapy-triggered ROS production or their cytotoxic effects. This is particularly important, given the as yet unresolved issues of radiation and chemo-resistance, to the authors’ best knowledge. Another potential future benefit of this approach – considering its non-thermal mechanism of action – is its possible role as an adjuvant to immunotherapy. Substantial pre-clinical studies have demonstrated the efficacy and targeting capability of this therapeutic approach. However, SDT has yet to be fully characterised and appropriately exploited for the treatment of cancer. In this study, a formulation based on multistimulus-responsive sensitizer-containing nanoparticles that can accumulate in advanced prostate tumours and increase the therapeutic efficacy of SDT has been developed. The formulation is based on a polyglutamate-tyrosine (PGATyr) co-polymer carrying hematoporphyrin. The efficacy of SDT in this study was demonstrated using prostate cancer as the translational exemplar. The formulation was designed to respond to the microenvironment of advanced prostate tumours, such as the overexpression of the proteolytic enzymes, cathepsin-B and prostate-specific membrane antigen (PSMA), that can degrade the nanoparticles, reduce their size, improving both diffusions throughout the tumour mass and cellular uptake. The therapeutic modality was initially tested in vitro using LNCaP and PC3 cells as target cell lines. The SDT efficacy was also examined in vivo, using male SCID mice bearing LNCaP subcutaneous tumours. We have demonstrated that the PGATyr co-polymer is digested by cathepsin B and that digestion of the formulation by cathepsin-B, at tumour-mimicking conditions (acidic pH), leads to decreased nanoparticle size and subsequent increased cellular uptake. Sonodynamic treatment, at both normoxic and hypoxic conditions, demonstrated ultrasound-induced cytotoxic effects only for the nanoparticle-treated prostate cancer cells, while the toxicity of the formulation in the absence of ultrasound was minimal. Our in vivo studies in immunodeficient mice, using the hematoporphyrin-containing PGATyr nanoparticles for SDT, showed a 50% decrease in LNCaP tumour volumes within 24h, following IV administration of a single dose. No adverse effects were recorded, and body weight was stable. The results described in this study clearly demonstrate the promise of SDT to revolutionize cancer treatment. It emphasizes the potential of this therapeutic modality as a fist line treatment or in combination treatment for the elimination or downstaging of difficult to treat cancers, such as prostate, pancreatic, and advanced colorectal cancer.

Keywords: sonodynamic therapy, nanoparticles, tumour ablation, ultrasound

Procedia PDF Downloads 138
143 Design, Synthesis, and Evaluation of Small Peptides for Managing Inflammation: Inhibition to Substrate Approach

Authors: Palwinder Singh, Baljit Kaur, Sukhmeet Kaur

Abstract:

Amongst a library of rationally designed small peptides, (H)Gly-Gly-Phe-Leu(OMe) was identified, reducing prostaglandin production of COX-2 with IC50 60 nM vs. 6000 nM for COX-1. The 5 mg Kg-1 dose of this compound rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of the compound for targeting COX-2, iNOS, and VGSC was investigated by using substances P, L-arginine, and veratrine, respectively, as the biomarkers. The interactions of the potent compound with COX-2 were supported by the isothermal calorimetry experiments showing Ka 6.10±1.10x104 mol-1 and ΔG -100.3 k J mol-1 in comparison to Ka 0.41x103 ±0.09 mol-1 and ΔG -19.2±0.06 k J mol-1 for COX-1. This compound did not show toxicity up to 2000 mg Kg-1 dose. Furthermore, beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, COX-2 was provided with a peptide-based alternate substrate. Proline-centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin-induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Hence, we suggest small peptides as highly potent and promising candidates for their further development into an anti-inflammatory drug.

Keywords: small peptides, cyclooxygenase, inflammation, substrate

Procedia PDF Downloads 88
142 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism

Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao

Abstract:

Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.

Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2

Procedia PDF Downloads 102
141 Tyrosine Rich Fraction as an Immunomodulatory Agent from Ficus Religiosa Bark

Authors: S. A. Nirmal, G. S. Asane, S. C. Pal, S. C. Mandal

Abstract:

Objective: Ficus religiosa Linn (Moraceae) is being used in traditional medicine to improve immunity hence present work was undertaken to validate this use scientifically. Material and Methods: Dried, powdered bark of F. religiosa was extracted successively using petroleum ether and 70% ethanol in soxhlet extractor. The extracts obtained were screened for immunomodulatory activity by delayed type hypersensitivity (DTH), neutrophil adhesion test and cyclophosphamide-induced neutropenia in Swiss albino mice at the dose of 50 and 100 mg/kg, i.p. 70% ethanol extract showed significant immunostimulant activity hence subjected to column chromatography to produce tyrosine rich fraction (TRF). TRF obtained was screened for immunomodulatory activity by above methods at the dose of 10 mg/kg, i.p. Results: TRF showed potentiation of DTH response in terms of significant increase in the mean difference in foot-pad thickness and it significantly increased neutrophil adhesion to nylon fibers by 48.20%. Percentage reduction in total leukocyte count and neutrophil by TRF was found to be 43.85% and 18.72%, respectively. Conclusion: Immunostimulant activity of TRF was more pronounced and thus it has great potential as a source for natural health products.

Keywords: Ficus religiosa, immunomodulatory, cyclophosphamide, neutropenia

Procedia PDF Downloads 446
140 The Effect of 8 Weeks Endurance Training and L-NAME on Apelin in Adipose Tissue, Glucose and Insulin in Elderly Male's Rats

Authors: Asieh Abbassi Daloii, Fatemeh Fani, Ahmad Abdi

Abstract:

Objective: The aim of this study was to determine the effect of 8 weeks endurance training and L-NAME on apelin in adipose tissue, glucose and insulin in elderly male’s rats. Methods: For this purpose, 24 vistar elderly rats with average 20 months old purchased from Razi Institute and transferred to Research Center were randomly divided into four groups: 1. control, 2. training, 3.training and L-NAME and 4. L-NAME. Training protocol performed for 8 weeks and 5 days a week with 75-80 VO2 max. All rats were killed 72 hours after the final training session and after 24 hours of fasting adipose tissue samples were collected and kept in -80. Also, Data was analyzed with One way ANOVA and Tucky in p < 0/05. Results: The results showed that the inhibition of nitric oxide on apelin in adipose tissue of adult male rats after eight weeks of endurance training increased significantly compared to the control group (p < 0.00). Also, the results showed no significant difference between the levels of insulin and glucose groups. Conclusion: It is likely that the increased apelin in adipose tissue in mice independent of insulin and glucose.

Keywords: endurance training, L-NAME, apelin in adipose tissue, elderly male rats

Procedia PDF Downloads 459
139 Synthesis, Molecular-Docking, and Biological Evaluation of Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents

Authors: Iram Batool, Aamer Saeed, Irfan Zia Qureshi, Ayesha Razzaq, Saima Kalsoom

Abstract:

Heterocyclic compounds analogues and their derivatives have attracted strong interest in medicinal chemistry due to their biological and pharmacological properties. A series of new thiazolopyrimidine carboxylates were conveniently synthesized by one-pot three-component reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with electron-donating and electron-withdrawing groups in order to find some more potent antidiabetic and antibacterial drugs. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. An in vitro antidiabetic effect was evaluated in adult male BALB/c mice and antibacterial activities were tested against Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Some of the tested compounds proved to possess good to excellent activities more than the reference drugs. An in silico molecular docking was also performed on synthesized compounds. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs and understanding the mechanism by which such drugs interact with RNA and diabetes target and exert their biochemical action.

Keywords: antidiabetic, antibacterial, MOE docking, thiazolopyrimidine

Procedia PDF Downloads 457
138 Broad Protection against Avian Influenza Virus by Using a Modified Vaccinia Ankara Virus Expressing a Mosaic Hemagglutinin

Authors: Attapon Kamlangdee, Brock Kingstad-Bakke, Tavis K. Anderson, Tony L. Goldberg, Jorge E. Osorio

Abstract:

A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection post vaccination. Both neutralizing antibodies and antigen-specific CD4+and CD8+ T cells were still detected at 5 months post vaccination, suggesting that MVA-H5M provides long-lasting immunity.

Keywords: modified vaccinia Ankara, MVA, H5N1, hemagglutinin, influenza vaccine

Procedia PDF Downloads 279
137 Synthesis, Characterization, Computational Study, Antimicrobial Evaluation, in Vivo Toxicity Study of Manganese (II) and Copper (II) Complexes with Derivative Sulfa-drug

Authors: Afaf Bouchoucha, Karima Si Larbi, Mohamed Amine Bourouaia, Salah.Boulanouar, Safia.Djabbar

Abstract:

The synthesis, characterization and comparative biological study of manganese (II) and copper (II) complexes with an heterocyclic ligand used in pharmaceutical field (Scheme 1), were reported. Two kinds of complexes were obtained with derivative sulfonamide, [M (L)₂ (H₂O)₂].H₂O and [M (L)₂ (Cl)₂]3H₂O. These complexes have been prepared and characterized by elemental analysis, FAB mass, ESR magnetic measurements, FTIR, UV-Visible spectra and conductivity. Their stability constants have been determined by potentiometric methods in a water-ethanol (90:10 v/v) mixture at a 0.2 mol l-1 ionic strength (NaCl) and at 25.0 ± 0.1 ºC using Sirko program. DFT calculations were done using B3LYP/6-31G(d) and B3LYP/LanL2DZ. The antimicrobial activity of ligand and complexes against the species Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilisan, Candida albicans, Candida tropicalis, Saccharomyces, Aspergillus fumigatus and Aspergillus terreus has been carried out and compared using agar-diffusion method. Also, the toxicity study was evaluated on synchesis complexes using Mice of NMRI strain.

Keywords: hetterocyclic ligand, complex, stability constant, antimicrobial activity, DFT, acute and genotoxicity study

Procedia PDF Downloads 118
136 A phytochemical and Biological Study of Viscum schemperi Engl. Growing in Saudi Arabia

Authors: Manea A. I. Alqrad, Alaa Sirwi, Sabrin R. M. Ibrahim, Hossam M. Abdallah, Gamal A. Mohamed

Abstract:

Phytochemical study of the methanolic extract of the air dried powdered of the parts of Viscum schemperi Engl. (Family: Viscaceae) using different chromatographic techniques led to the isolation of five compounds: -amyrenone (1), betulinic acid (2), (3β)-olean-12-ene-3,23-diol (3), -oleanolic acid (4), and α-oleanolic acid (5). Their structures were established based on physical, chemical, and spectral data. Anti-inflammatory and anti-apoptotic activities of oleanolic acid in a mouse model of acute hepatorenal damage were assessed. This study showed the efficacy of oleanolic acid to counteract thioacetamide-induced hepatic and kidney injury in mice through the reduction of hepatocyte oxidative damage, suppression of inflammation, and apoptosis. More importantly, oleanolic acid suppressed thioacetamide-induced hepatic and kidney injury by inhibiting NF-κB/TNF-α-mediated inflammation/apoptosis and enhancing SIRT1/Nrf2/Heme-oxygenase signalling pathway. These promising pharmacological activities suggest the potential use of oleanolic acid against hepatorenal damage.

Keywords: oleanolic acid, viscum schimperi, thioacetamide, SIRT1/Nrf2/NF-κB, hepatorenal damage

Procedia PDF Downloads 98
135 Evaluation of the Synergistic Inhibition of Enterovirus 71 Infection by Interferon-α Coupled with Pleconaril in RD Cells

Authors: Wen-Yu Lin, Yi-Ching Chung, Tzyy-Rong Jinn

Abstract:

It is well known that enterovirus 71 (EV71) causes recurring outbreaks of hand, foot and mouth disease (HFMD) and encephalitis leading to complications or death in young children. And, several HFMD of EV71 with high mortalities occurred in Asia countries, such as Malaysia (1997), Taiwan (1998) and China (2008). Thus, more effective antiviral drugs are needed to prevent or reduce EV71-related complications. As reported, interferon-α protects mice from lethal EV71 challenge by the modulation of innate immunity and then degrade enterovirus protease 3Cᵖʳᵒ. On the other side, pleconaril by targeting enterovirus VP1 protein and then block virus entry and attachment. Thus, the aim of this study was to evaluate the synergistic antiviral activity of interferon-α and pleconaril against enterovirus 71 infection. In a preliminary study showed that pleconaril at concentrations of 50, 100 and 300 µg/mL reduced EV71-induced CPE to 52.0 ± 2.5%, 40.2 ± 3.5% and 26.5 ± 1.5%, respectively, of that of the EV71-infected RD control cells (taken as 100%). Notably, 1000 IU/mL of interferon-α in combination with pleconaril at concentrations of 50, 100 and 300µg/mL suppressed EV71-induced CPE by 30.2 ± 3.8%, 16.5 ± 1.3% and 2.8 ± 2.0%, respectively, of that of the pleconaril alone treated with the infected RD cells. These results indicated that interferon-α 1000 IU/mL combination with pleconaril (50, 100 and 300µg/mL) inhibited EV71-induced CPE more effectively than treated with pleconaril alone in the infected RD cells.

Keywords: enterovirus 71, interferon-α, pleconaril, RD cells

Procedia PDF Downloads 140
134 Aquaporin-1 as a Differential Marker in Toxicant-Induced Lung Injury

Authors: Ekta Yadav, Sukanta Bhattacharya, Brijesh Yadav, Ariel Hus, Jagjit Yadav

Abstract:

Background and Significance: Respiratory exposure to toxicants (chemicals or particulates) causes disruption of lung homeostasis leading to lung toxicity/injury manifested as pulmonary inflammation, edema, and/or other effects depending on the type and extent of exposure. This emphasizes the need for investigating toxicant type-specific mechanisms to understand therapeutic targets. Aquaporins, aka water channels, are known to play a role in lung homeostasis. Particularly, the two major lung aquaporins AQP5 and AQP1 expressed in alveolar epithelial and vasculature endothelia respectively allow for movement of the fluid between the alveolar air space and the associated vasculature. In view of this, the current study is focused on understanding the regulation of lung aquaporins and other targets during inhalation exposure to toxic chemicals (Cigarette smoke chemicals) versus toxic particles (Carbon nanoparticles) or co-exposures to understand their relevance as markers of injury and intervention. Methodologies: C57BL/6 mice (5-7 weeks old) were used in this study following an approved protocol by the University of Cincinnati Institutional Animal Care and Use Committee (IACUC). The mice were exposed via oropharyngeal aspiration to multiwall carbon nanotube (MWCNT) particles suspension once (33 ugs/mouse) followed by housing for four weeks or to Cigarette smoke Extract (CSE) using a daily dose of 30µl/mouse for four weeks, or to co-exposure using the combined regime. Control groups received vehicles following the same dosing schedule. Lung toxicity/injury was assessed in terms of homeostasis changes in the lung tissue and lumen. Exposed lungs were analyzed for transcriptional expression of specific targets (AQPs, surfactant protein A, Mucin 5b) in relation to tissue homeostasis. Total RNA from lungs extracted using TRIreagent kit was analyzed using qRT-PCR based on gene-specific primers. Total protein in bronchoalveolar lavage (BAL) fluid was determined by the DC protein estimation kit (BioRad). GraphPad Prism 5.0 (La Jolla, CA, USA) was used for all analyses. Major findings: CNT exposure alone or as co-exposure with CSE increased the total protein content in the BAL fluid (lung lumen rinse), implying compromised membrane integrity and cellular infiltration in the lung alveoli. In contrast, CSE showed no significant effect. AQP1, required for water transport across membranes of endothelial cells in lungs, was significantly upregulated in CNT exposure but downregulated in CSE exposure and showed an intermediate level of expression for the co-exposure group. Both CNT and CSE exposures had significant downregulating effects on Muc5b, and SP-A expression and the co-exposure showed either no significant effect (Muc5b) or significant downregulating effect (SP-A), suggesting an increased propensity for infection in the exposed lungs. Conclusions: The current study based on the lung toxicity mouse model showed that both toxicant types, particles (CNT) versus chemicals (CSE), cause similar downregulation of lung innate defense targets (SP-A, Muc5b) and mostly a summative effect when presented as co-exposure. However, the two toxicant types show differential induction of aquaporin-1 coinciding with the corresponding differential damage to alveolar integrity (vascular permeability). Interestingly, this implies the potential of AQP1 as a differential marker of toxicant type-specific lung injury.

Keywords: aquaporin, gene expression, lung injury, toxicant exposure

Procedia PDF Downloads 184
133 Radix Saposhnikoviae Suppresses Allergic Contact Dermatitis in Mice by Regulating DCs Activated Th1-Type Cells

Authors: Hailiang Liu, Yan Ni, Jie Zheng, Xiaoyan Jiang, Min Hong

Abstract:

Allergic contact dermatitis (ACD) is a commonly clinical type IV allergic skin disease, with the pathological features of infiltration by mononuclear cells and tissue necrosis. Traditional Chinese medicine Radix Saposhnikoviae (RS) is traditionally employed to treat exogenous evils, rubella, itching, rheumatism and tetanus. Meanwhile, it is an important component of the commonly used anti-allergy compound. It’s now widely used as an immuno-modulating agent in mixed herbal decoctions to treat inflammation. However, its mechanism of anti-allergy remains unknown. RS was found to reduce ear thickness, as well as the infiltration of eosinophils. The proliferation of T lymphocytes was inhibited significantly by RS, markedly decreased IFN-γ levels in the supernatant of cells cultured and serum were detected with the treatment of RS. RS significantly decreased the amount of DCs in the mouse lymph nodes, and inhibited the expression of CD4 0 and CD86. Meanwhile, T-bet mRNA expression was down remarkably regulated by RS. These results indicate that RS cures Th1-induced allergic skin inflammation by regulating Th1/Th2 balance with decreasing Th1 differentiation, which might be associated with DCs.

Keywords: allergic contact dermatitis, Radix saposhnikoviae, dendritic cells, T-bet, GATA-3, CD4+ CD25+ Foxp3+ treg cells

Procedia PDF Downloads 374
132 Suppression of DMBA/TPA-Induced Skin Tumorigenesis by Menthol through Inhibition of Inflammation, NF-kappaB, Ras-Raf-ERK Pathway

Authors: Zhaoguo Liu, Cunsi Shen, Yin Lu

Abstract:

Growing evidence has shown that menthol has potent anticancer activity in various human cancers. However, its effect on skin cancer remains largely unknown. In the present study, we investigated the chemopreventive potential of menthol against 7, 12-dimethylbenz[a] anthracene(DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA)-induced skin tumorigenesis in ICR mice. Our results showed that menthol significantly inhibited TPA-induced inflammatory responses and pro-inflammatory cytokine release. We also found that menthol treatment significantly inhibited TPA-induced lipid peroxidation (LPO), mouse UDP-glucumno-syltransferase (UGT), mouse NADH Dehydrogenase, Quinone 1 (NQO1) release. Furthermore, we found menthol treatment significantly inhibited the tumor incidence and number of tumors (P < 0.001). Interestingly, we observed that menthol treatment significantly inhibited TPA-induced altered activity of NF-κB in skin tumor. Consistently, menthol-treated tumors also showed significantly suppressed the Ras-Raf-ERK signaling pathway. Thus, our results suggest that menthol inhibits DMBA/TPA-induced skin tumorigenesis by attenuating the Ras and inhibiting NF-κB activity via inhibition of inflammation responses and pro-inflammatory cytokine release.

Keywords: DMBA/TPA, NF-κB, Ras-Raf-ERK, skin tumorigenesis

Procedia PDF Downloads 313
131 Development and Evaluation of Novel Diagnostic Methods for Infectious Rhinotracheitis of Cattle

Authors: Wenxiao Liu, Kun Zhang, Yongqing Li

Abstract:

Bovine herpesvirus 1, a member of the genus Variellovirus of the subfamily Alphaherpesvirinae, has caused severe economic cost to the bovine industry. In this study, BoHV-1 glycerol protein gD was expressed in insect cells, and the purified gD was immunized in the Balb/C mice to generate monoclonal antibodies. Based on hybridoma cell fusion techniques, 20 monoclonal antibodies against Bovine herpesvirus 1 have been obtained. Further, mAb 3F8 with neutralizing activity and gD were applied to develop a blocking enzyme-linked immunosorbent assay (Elisa) for detecting neutralizing antibodies against BoHV-1, which shows a significant correlation between the blocking Elisa and VNT. The sensitivity and specificity of the test were estimated to be 94.59% and 93.42%, respectively. Furthermore, antibody pairing tests revealed that mAb 1B6 conjugated to fluorescence microspheres was used as the capture antibody, and mAb 3F9 was used as the detectable antibody to establish the immunochromatographic assay (ICS). The ICS was conducted to detect BoHV-1 in bovine samples with high sensitivity, specificity, and good stability. Clinical sample testing revealed that the results of ICS and real-time PCR have a coincidence rate of 95.42%. Our research confirmed that the ICS is a rapid and reliable method for the diagnosis of BoHV-1. In conclusion, our results lay a solid foundation for the prevention and control of BoHV-1 infection.

Keywords: bovine disease, BoHV-1, ELISA, ICS assay

Procedia PDF Downloads 74
130 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data

Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.

Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry

Procedia PDF Downloads 219
129 Side Effects of Dental Whitening: Published Data from the Literature

Authors: Ilma Robo, Saimir Heta, Emela Dalloshi, Nevila Alliu, Vera Ostreni

Abstract:

The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure, or on the pulp of the tooth, where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of minimally invasive dental bleaching treatment. Methodology: In selected articles, the other aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. Results: The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. Short conclusion: The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing.

Keywords: teeth whitening, side effects, permanent teeth, formed dental apex

Procedia PDF Downloads 63
128 New Quinazoline Derivative Exhibit Cytotoxic Effect agaisnt MCF-7 Human Breast Cancer Cell

Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

The new quinazoline Schiff bases have been synthesized through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The compound was investigated for anticancer activity against MCF-7 human breast cancer cell line. It demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41±0.34, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with compound subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome C release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potential candidate for further in vivo and clinical breast cancer studies.

Keywords: quinazoline Schiff base, apoptosis, MCF-7, caspase, cell cycle, acute toxicity

Procedia PDF Downloads 441
127 Evaluation of Anti-Leishmanial Activity of Albaha Medicinal Plants against Leishmania amazonensis

Authors: Saeed S. Al-Sokari, Nasser A. Awadh Ali, Lianet Monzote

Abstract:

Leishmaniasis (CL) is endemic in at least 82 countries and considered to be a major public-health problem (1). The annual incidence of CL is 1–1.5 million cases of which 90% occur in only seven countries: Afghanistan, Algeria, Brazil, Iran, Peru, Saudi Arabia and Syria (2). In Saudi Arabia, the disease was first described in 1973 by Moursy and Shoura (3). Currently, CL is common in the human population in different localities, including the Eastern Province of Saudi Arabia and in particular the Al-Hassa Oasis that is a known endemic area for CL (4). Five methanolic extracts obtained from Achillea biebersteinii (flower leaf), Euphorbia antiquorm, Solanum incanum (leaf and fruit extracts), collected from Albaha region and selected from ethno-botanical data, were screened for their anti-leishmanial activity against Leishmania amazonensis (6). The cytotoxic activity against normal peritoneal macrophages from normal BALB/c mice was also determined (6). The five extracts had IC50 values ranging from < 12.5 to 37.8 µg/ml against promastigotes. Achillea biebersteinii flower, Euphorbia antiquorm, Solanum incanum leaf extracts showed anti-leishmanial activities with IC50 between < 12.5 - 26.9µg/mL and acceptable selectivity indices of 8 - 5.

Keywords: plant extracts, Albaha, Leishmania amazonensis, Medicinal

Procedia PDF Downloads 344
126 Contribution to the Study of the Microbiological Quality of Chawarma Sold in Biskra

Authors: Sara Boulmai̇z

Abstract:

In order to study the microbiological quality of chawarma sold in Biskra, a sampling through some fastfoods of the city was done, the parameters studied are highlighted according to the criteria required by the country's trade management. Microbiological analyzes revealed different levels of contamination by microorganisms. The 10 samples were of an overall view of unsatisfactory quality, and according to the standards, no sample was satisfactory. The range of total aerobic mesophilic flora found is between 105 and 1.2 × 10 7 CFU / g, that of fecal coliforms is 104 to 2.4 × 10 5 CFU / g. The suspected pathogenic staphylococci were between 3.103 and 2.7.106 CFU / g. Salmonellae were absent in all samples, whereas sulphite-reducing anaerobes were present in a single sample. The rate of E. cloacae was between 103 and 6.104 CFU / g. As for fungi and safe mice, their rate was 103 to 107 CFU / g. The study of the sensitivity of antibiotics showed multi-resistance to all the antibiotics tested, although there is a sensitivity towards others. All strains of Staphylococcus aureus tested demonstrated resistance against erythromycin, 30% against streptomycin, and 10% against tetracycline. While the strains of E. cloacae were resistant in all strains to amoxicillin, ceftazidime, cefotaxime, and erythromycin, while they were sensitive to fosfomycin, sulfamethoxazole trimethoperine, ciprofloxacin, and tetracycline. While against chlorophenicol and ofloxacin, the sensitivity was dominant, although there was intermediate resistance. In this study demonstrates that foodborne illnesses remain a problem that arises in addition to the increasingly observed bacterial resistance and that, after all, healthy eating is a right.

Keywords: chawarma, microbiological quality, pathogens., street food

Procedia PDF Downloads 111
125 4(3H)-Quinazolinone Derivatives' Synthesis and Evaluation as Antimalarial and Anti-Leishmanial Agents

Authors: Alemu Tadesse Feroche

Abstract:

In this study, some 2, 3 distributed quinazoline -4 (3H) - one derivative were synthesized using a three-step synthetic route. They were obtained in a good yield (59.5-85%) by applying different chemical reactions like cyclization and condensation reactions. The chemical structure of the final compounds was also verified by spectroscopic methods (IR, ¹HNMR) and elemental microanalysis. The in vivo antimalarial activity of these compounds on P. berghei infected mice was found to be moderate to high at an oral dose of 0.04846 mmol/kg /day. This is equal to 25 mg/kg of chloroquine phosphate, which causes 100% inhibition of the parasite. It is worth mentioning that most active compounds (E) -3 Phenyl -2- [2- (pyridine -4- yl) vinyl] -4 (3H) -quinazolinone IVa (64.02%, (E)-2-[2-(4 - Hydroxy-3 - methoxystyryl) - vinyl) -3 - phenyl -4 (3H ) - quinazolinone IVc (77.25%) and (E)-2 –[2 –(Pyridin -4-yl) –vinyl] -3 phenenylamine -4(3H) quinazolinone IVe (73.54%) showed a dose-dependent increase in present suppression in antimalarial activities. Furthermore, the synthesized compounds were screened for their in vitro antileishmanial activity against L. aethiopica isolate (CL/039/09). All tested compounds (IVa (0.03766 ug/ml), IVb (0.00538 ug/ml, IVc (0.00412 ug/ml, IVd (0.00110 ug/ml), IVe (0.03017 ug/ml) and IVf (0.03894 ug/ml)) showed excellent potency that is much better than amphotericin B (IC50 = 0,04359 ug/ml). The results of acute toxicity indicated that all test compounds (IVa –IVf) proved to be nontoxic and well tolerated by the experimental animals up to 300 mg/kg in oral and 140 mg/kg in parental studies.

Keywords: 4(3H)-quinazolinone, in vivo antimalarial activity, in vitro antileishmanial activity, acute toxicity

Procedia PDF Downloads 100
124 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis

Authors: T. Heikkinen, J. Oksman, T. Bragge, A. Nurmi, O. Kontkanen, T. Ahtoniemi

Abstract:

Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.

Keywords: Gait analysis, kinematic, motor impairment, inherent feature

Procedia PDF Downloads 355
123 Design and Characterization of Aromatase Inhibitor Loaded Nanoparticles for the Treatment of Breast Cancer

Authors: Harish K. Chandrawanshi, Mithun S. Rajput, Neelima Choure, Purnima Dey Sarkar, Shailesh Jain

Abstract:

The present research study aimed to fabricate and evaluate biodegradable nanoparticles of aromatase inhibitor letrozole, intended for breast cancer therapy. Letrozole loaded poly(D,L-lactide-co-glycolide acid) nanoparticles were prepared by solvent evaporation method using dichlorometane as solvent (oil phase) and polyvinyl alcohol (PVA) as aqueous phase. Prepared nanoparticles were characterized by particle size, infrared spectra, drug loading efficiency, drug entrapment efficiency and in vitro release and also evaluated for in vivo anticancer activity. The high speed homogenizer was used to produce stable nanoparticles of mean size range 198.35 ± 0.04 nm with high entrapment efficiency (69.86 ± 2.78%). Percentage of drug and homogenization speed significantly influenced the particle size, entrapment efficiency and release (p<0.05). The nanoparticles show significant in vivo anticancer activity against Ehrlich ascites carcinoma in mice. The significant system sustained the release of letrozole drug effectively and further investigation could exhibit its potential usefulness in breast cancer therapy.

Keywords: breast cancer/therapy, letrozole, nanoparticles, PLGA

Procedia PDF Downloads 580
122 Safe Limits Concentration of Ammonia at Work Environments through CD8 Expression in Rats

Authors: Abdul Rohim Tualeka, Erick Caravan K. Betekeneng, Ramdhoni Zuhro, Reko Triyono, M. Sahri

Abstract:

It has been widely reported incidence caused by acute and chronic effects of exposure to ammonia in the working environment in Indonesia, but ammonia concentration was found to be below the threshold value. The purpose of this study was to determine the safety limit concentration of ammonia in the working environment through the expression of CD8 as a reference for determining the threshold value of ammonia in the working environment. This research was a laboratory experimental with post test only control group design using experimental animals as subjects experiment. From homogeneity test results indicated that the weight of white rats exposed and control groups had a homogeneous variant with a significant level of p (0.701) > α (0.05). Description of the average breathing rate is 0.0013 m³/h. Average weight rats based group listed exposure is 0.1405 kg. From the calculation IRS CD8, CD8 highest score in the doses contained 0.0154, with the location of the highest dose of ammonia without any effect on the lungs of rats is 0.0154 mg/kg body weight of mice. Safe Human Dose (SHD) ammonia is 0.002 mg/kg body weight workers. The conclusion of this study is the safety limit concentration of ammonia gas in the working environment of 0,025 ppm.

Keywords: ammonia, CD8, rats, safe limits concentration

Procedia PDF Downloads 222
121 Inhibitory Effects of PPARγ Ligand, KR-62980, on Collagen-Stimulated Platelet Activation

Authors: Su Bin Wang, Jin Hee Ahn, Tong-Shin Chang

Abstract:

The peroxisome proliferator-activated receptors (PPARs) are member of nuclear receptor superfamily that act as a ligand-activated transcription factors. Although platelets lack a nucleus, previous studies have shown that PPARγ agonists, rosiglitazone, inhibited platelet activation induced by collagen. In this study, we investigated the inhibitory effects of KR-62980, a newly synthesized PPARγ agonist, on collagen receptor-stimulated platelet activation. The specific tyrosine phosphorylations of key components (Syk, Vav1, Btk and PLCγ2) for collagen receptor signaling pathways were suppressed by KR-62980. KR-62980 also attenuated downstream responses including cytosolic calcium elevation, P-selectin surface exposure, and integrin αIIbβ3 activation. PPARγ was found to associate with multiple proteins within the LAT signaling complex in collagen-stimulated platelets. This association was prevented by KR-62980, indicating a potential mechanism for PPARγ function in collagen-stimulated platelet activation. Furthermore, KR-62980 inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. Collectively, these data suggest that KR-62980 inhibits collagen-stimulated platelet activation and thrombus formation through modulating the collagen receptor signaling pathways.

Keywords: KR-62980, PPARγ, antiplatelet, thrombosis

Procedia PDF Downloads 333
120 The Effect of Visfatin on Pregnant Mouse Myometrial Contractility in vitro

Authors: Seham Alsaif, Susan Wray

Abstract:

Obesity is a worldwide disorder influencing women’s health and childbearing. There is a close relation between obesity and pregnancy related complications. Dyslipidemia and adipokine dysregulation are core environmental changes that may mechanistically link these complications with obesity in pregnant women. We have previously found that visfatin has a relaxant effect on mouse, rat and human myometrial contractility. We hypothesised that visfatin inhibits mouse myometrial contractility through the NAD+ pathway. This study was designed to examine the mechanism of action of visfatin on myometrial contractility. To examine the NAD+ pathway, FK866 which is a potent inhibitor of NAD+ biosynthesis was used. Methods: Myometrial strips from term pregnant mice were dissected, superfused with physiological saline and the effects of visfatin (10nM) on oxytocin-induced contractions (0.5nM) alone and after the infusion of FK866 (10uM) were studied. After regular contractions were established, contractility was examined for control (100%) and test response at 37 °C for 10 min each. Results: FK866 was found to inhibit the effect of visfatin on myometrial contractility (the AUC increased from 89±2% of control, P=0.0009 for visfatin alone to 97±4% of control, P>0.05 for visfatin combined with FK866, n=8). In conclusion, NAD+ pathway appears to be involved in the mechanism of action of visfatin on mouse myometrium. This could have a role in making new targets to prevent obesity-related complications.

Keywords: myometrium, obesity, oxytocin, pregnancy, visfatin

Procedia PDF Downloads 177
119 Anti-Infective Potential of Selected Philippine Medicinal Plant Extracts against Multidrug-Resistant Bacteria

Authors: Demetrio L. Valle Jr., Juliana Janet M. Puzon, Windell L. Rivera

Abstract:

From the various medicinal plants available in the Philippines, crude ethanol extracts of twelve (12) Philippine medicinal plants, namely: Senna alata L. Roxb. (akapulko), Psidium guajava L. (bayabas), Piper betle L. (ikmo), Vitex negundo L. (lagundi), Mitrephora lanotan (Blanco) Merr. (Lanotan), Zingiber officinale Roscoe (luya), Curcuma longa L. (Luyang dilaw), Tinospora rumphii Boerl (Makabuhay), Moringga oleifera Lam. (malunggay), Phyllanthus niruri L. (sampa-sampalukan), Centella asiatica (L.) Urban (takip kuhol), and Carmona retusa (Vahl) Masam (tsaang gubat) were studied. In vitro methods of evaluation against selected Gram-positive and Gram-negative multidrug-resistant (MDR), bacteria were performed on the plant extracts. Although five of the plants showed varying antagonistic activities against the test organisms, only Piper betle L. exhibited significant activities against both Gram-negative and Gram-positive multidrug-resistant bacteria, exhibiting wide zones of growth inhibition in the disk diffusion assay, and with the lowest concentrations of the extract required to inhibit the growth of the bacteria, as supported by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Further antibacterial studies of the Piper betle L. leaf, obtained by three extraction methods (ethanol, methanol, supercritical CO2), revealed similar inhibitory activities against a multitude of Gram-positive and Gram-negative MDR bacteria. Thin layer chromatography (TLC) assay of the leaf extract revealed a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV-366 nm. TLC- agar overlay bioautography of the isolated compounds showed the compounds with Rf values of 0.86 and 0.13 having inhibitory activities against Gram-positive MDR bacteria (MRSA and VRE). The compound with an Rf value of 0.86 also possesses inhibitory activity against Gram-negative MDR bacteria (CRE Klebsiella pneumoniae and MBL Acinetobacter baumannii). Gas Chromatography-Mass Spectrometry (GC-MS) was able to identify six volatile compounds, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include 4-(2-propenyl)phenol and eugenol; and the new four compounds were ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, and 3-fluoro-2-propynenitrite. Phytochemical screening and investigation of its antioxidant, cytotoxic, possible hemolytic activities, and mechanisms of antibacterial activity were also done. The results showed that the local variant of Piper betle leaf extract possesses significant antioxidant, anti-cancer and antimicrobial properties, attributed to the presence of bioactive compounds, particularly of flavonoids (condensed tannin, leucoanthocyanin, gamma benzopyrone), anthraquinones, steroids/triterpenes and 2-deoxysugars. Piper betle L. is also traditionally known to enhance wound healing, which could be primarily due to its antioxidant, anti-inflammatory and antimicrobial activities. In vivo studies on mice using 2.5% and 5% of the ethanol leaf extract cream formulations in the excised wound models significantly increased the process of wound healing in the mice subjects, the results and values of which are at par with the current antibacterial cream (Mupirocin). From the results of the series of studies, we have definitely proven the value of Piper betle L. as a source of bioactive compounds that could be developed into therapeutic agents against MDR bacteria.

Keywords: Philippine herbal medicine, multidrug-resistant bacteria, Piper betle, TLC-bioautography

Procedia PDF Downloads 768
118 Comparison of the Effects of Fresh Leaf, Septum and Peel Extracts of Walnut on Blood Glucose and Pancreatic Structure

Authors: Tahmineh Hasanzadeh, Afshin Farahbakhsh

Abstract:

There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intraperitoneally.In Iranian traditional medicine, septum of walnut shell (SWS) was recommended to reduce blood glucose. For this purpose, 41 male bulb/C mice 25-30 gm were divided into five groups. All the animals received IP injection of streptozotocin (STZ) (220 mg/kg). Two weeks later, the diabetic animals were received daily oral treatment of normal saline and aqueous extract of SWS (200, 400, 600 and 800 mg/kg) respectively for four weeks. Blood samples were taken from retro orbital sinus before the start of the experiment and repeated each two weeks. At the end of the experiment, the animals were sacrificed and the pancreatic tissues were fixed, prepared and stained by Hematoxylin-Eosin for light microscope studies. The results showed that in each group, the SWS extract reduced blood glucose in a long time (p < 0.05). metabolic extract in STZ- induced diabetic rats, which was accompanied by the hypoglycemic effect of leaf extract. However, this effect should be determined with scientific researches. Therefore, the aim of this study is to evaluate the effect of the aqueous extract of SWS on blood glucose and histopathological structure of pancreas.

Keywords: septum of walnut, blood glucose, pancreas, diabetes, walnut leaf, walnut peel, insulin

Procedia PDF Downloads 279
117 Immunomodulatory Effect of Deer Antler Extract

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

Velvet antler (VA), the immature antlers of male deer, is traditionally used for thousands of years in Asian countries, such as Korea, China, Taiwan, and Mongolia. It has been considered to improve immune system and physical strength. The goal of this study was to investigate the immunomodulatory effect of deer antler velvet using in vitro system. In the first step, the effects of VA (70% ethanol extract) on the proliferation of splenocytes, bone marrow cell, and macrophages were determined. Next, the effect of VA on the production of nitric oxide and phagocytic activity in macrophage were measured. The results showed that VA treatment increased concanavalin-A stimulated splenocyte, bone marrow cells, and macrophage proliferation in a dose dependent manner. VA at 50 and 100 ug/mL concentrations significantly enhanced the concanavalin-A stimulated splenocyte proliferation by 8.8% and 18.5%, respectively. The proliferation of bone marrow cells, isolated from 5wk-old ICR mice, were increased by 25.2% and 46.5% by 50 and 100 ug/mL VA treatment. RAW 264.7 cell proliferation reached peak value at 50 ug/mL of VA treatment exhibiting 108% of the basal value. Nitric oxide production by RAW 264.7 macrophage cells was slightly reduced by VA treatment but was not statistically significant. Moreover, the phagocytic activity of macrophages was enhanced by VA treatment. These results indicate that VA is effective in immune system.

Keywords: deer antler, splenocyte, bone marrow cells, macrophage proliferation, phagocytosis

Procedia PDF Downloads 272
116 Activation of Mitophagy and Autophagy in Familial Forms of Parkinson's Disease, as a Potential Strategy for Cell Protection

Authors: Nafisa Komilova, Plamena Angelova, Andrey Abramov, Ulugbek Mirkhodjaev

Abstract:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD.

Keywords: Parkinson's disease, mutations, mitophagy, autophagy

Procedia PDF Downloads 197
115 Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate

Authors: Mi-Hye Hwang, Young Min Son, Kichan Lee, Bang-Hun Hyun, Byeong Yeal Jung

Abstract:

Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism.

Keywords: botulism, livestock, vaccine, recombinant protein, toxin

Procedia PDF Downloads 239