Search results for: stylistic variation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2515

Search results for: stylistic variation

2125 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 271
2124 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases

Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams

Abstract:

Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.

Keywords: bauxite, kaolin, aging, crystallization, zeolites

Procedia PDF Downloads 220
2123 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters

Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola

Abstract:

Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.

Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR

Procedia PDF Downloads 76
2122 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 537
2121 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 575
2120 A Comparative Analysis of Body Idioms in Two Romance Languages and in English Aiming at Vocabulary Teaching and Learning

Authors: Marilei Amadeu Sabino

Abstract:

Before the advent of Cognitive Linguistics, metaphor was considered a stylistic issue, but now it is viewed as a critical component of everyday language and a fundamental mechanism of human conceptualizations of the world. It means that human beings' conceptual system (the way we think and act) is metaphorical in nature. Another interesting hypothesis in Cognitive Linguistics is that cognition is embodied, that is, our cognition is influenced by our experiences in the physical world: the mind is connected to the body and the body influences the mind. In this sense, it is believed that many conceptual metaphors appear to be potentially universal or near-universal, because people across the world share certain bodily experiences. In these terms, many metaphors may be identical or very similar in several languages. Thus, in this study, we analyzed some somatic (also called body) idioms of Italian and Portuguese languages, in order to investigate the proportion in which their metaphors are the same, similar or different in both languages. It was selected hundreds of Italian idioms in dictionaries and indicated their corresponding idioms in Portuguese. The analysis allowed to conclude that much of the studied expressions are really structurally, semantically and metaphorically identical or similar in both languages. We also contrasted some Portuguese and Italian somatic expressions to their corresponding English idioms to have a multilingual perspective of the issue, and it also led to the conclusion that the most common idioms based on metaphors are probably those that have to do with the human body. Although this is mere speculation and needs more study, the results found incite relevant discussions on issues that matter Foreign and Second Language Teaching and Learning, including the retention of vocabulary. The teaching of the metaphorically different body idioms also plays an important role in language learning and teaching as it will be shown in this paper. Acknowledgments: FAPESP – São Paulo State Research Support Foundation –the financial support offered (proc. n° 2017/02064-7).

Keywords: body idioms, cognitive linguistics, metaphor, vocabulary teaching and learning

Procedia PDF Downloads 335
2119 Genetic Diversity and Variation of Nigerian Pigeon (Columba livia domestica) Populations Based on the Mitochondrial Coi Gene

Authors: Foluke E. Sola-Ojo, Ibraheem A. Abubakar, Semiu F. Bello, Isiaka H. Fatima, Sule Bisola, Adesina M. Olusegun, Adeniyi C. Adeola

Abstract:

The domesticated pigeon, Columba livia domestica, has many valuable characteristics, including high nutritional value and fast growth rate. There is a lack of information on its genetic diversity in Nigeria; thus, the genetic variability in mitochondrial cytochrome oxidase subunit I (COI) sequences of 150 domestic pigeons from four different locations was examined. Three haplotypes (HT) were identified in Nigerian populations; the most common haplotype, HT1, was shared with wild and domestic pigeons from Europe, America, and Asia, while HT2 and HT3 were unique to Nigeria. The overall haplotype diversity was 0.052± 0.025, and nucleotide diversity was 0.026± 0.068 across the four investigated populations. The phylogenetic tree showed significant clustering and genetic relationship of Nigerian domestic pigeons with other global pigeons. The median-joining network showed a star-like pattern suggesting population expansion. AMOVA results indicated that genetic variations in Nigerian pigeons mainly occurred within populations (99.93%), while the Neutrality tests results suggested that the Nigerian domestic pigeons’ population experienced recent expansion. This study showed a low genetic diversity and population differentiation among Nigerian domestic pigeons consistent with a relatively conservative COI sequence with few polymorphic sites. Furthermore, the COI gene could serve as a candidate molecular marker to investigate the genetic diversity and origin of pigeon species. The current data is insufficient for further conclusions; therefore, more research evidence from multiple molecular markers is required.

Keywords: Nigeria pigeon, COI, genetic diversity, genetic variation, conservation

Procedia PDF Downloads 195
2118 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements

Authors: Mohamad Molavi Nojumi, Xiaodong Wang

Abstract:

In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.

Keywords: finite element, fracture mechanics, functionally graded materials, graded element

Procedia PDF Downloads 174
2117 Spatial Variability of Renieramycin-M Production in the Philippine Blue Sponge, Xestospongia Sp.

Authors: Geminne Manzano, Porfirio Aliño, Clairecynth Yu, Lilibeth Salvador-Reyes, Viviene Santiago

Abstract:

Many marine benthic organisms produce secondary metabolites that serve as ecological roles to different biological and environmental factors. The secondary metabolites found in these organisms like algae, sponges, tunicates and worms exhibit variation at different scales. Understanding the chemical variation can be essential in deriving the evolutionary and ecological function of the secondary metabolites that may explain their patterns. Ecological surveys were performed on two collection sites representing from two Philippine marine biogeographic regions – in Oriental Mindoro located on the West Philippine Sea (WPS) and in Zamboanga del Sur located at Celebes Sea (CS), where a total of 39 Xestospongia sp. sponges were collected using SCUBA. The sponge samples were transported to the laboratory for taxonomic identification and chemical analysis. Biological and environmental factors were investigated to determine their relation to the abundance and distribution patterns and its spatial variability of their secondary metabolite production. Extracts were subjected to thin-layer chromatography and anti-proliferative assays to confirm the presence of Renieramycin-M and to test its cytotoxicity. The blue sponges were found to be more abundant on the WPS than in CS. Both the benthic community and the fish community in Oriental Mindoro, WPS and Zamboanga del Sur, CS sites are characterized by high species diversity and abundance and a very high biomass category. Environmental factors like depth and monsoonal exposure were also compared showing that wave exposure and depth are associated with the abundance and distribution of the sponges. Renieramycin-M presence using the TLC profiles between the sponge extracts from WPS and from CS showed differences in the Reniermycin-M presence and the presence of other functional groups were observed between the two sites. In terms of bioactivity, different responses were also exhibited by the sponge extracts coming from the different region. Different responses were also noted on its bioactivity depending on the cell lines tested. Exploring the influence of ecological parameters on the chemical variation can provide deeper chemical ecological insights in the knowledge and their potential varied applications at different scales. The results of this study provide further impetus in pursuing studies into patterns and processes of the chemical diversity of the Philippine blue sponge, Xestospongia sp. and the chemical ecological significance of the coral triangle.

Keywords: chemical ecology, porifera, renieramycin-m, spatial variability, Xestospongia sp.

Procedia PDF Downloads 210
2116 Examining the Relationship between Family Functioning and Perceived Self-Efficacy

Authors: Fenni Sim

Abstract:

Objectives: The purpose of the study is to examine the relationship between family functioning and level of self-efficacy: how family functioning can potentially affect self-efficacy which will eventually lead to better clinical outcomes. The hypothesis was ‘Patients on haemodialysis with perceived higher family functioning are more likely to have higher perceived level of self-efficacy’. Methods: The study was conducted with a mixed methodology of quantitative and qualitative data collection of survey and semi-structured interview respectively. The General Self-Efficacy scale and SCORE-15 were self-administered by participants. The data will be analysed with correlation analysis method using Microsoft Excel. 79 patients were recruited for the study through random sampling. 6 participants whose results did not reflect the hypothesis were then recruited for the qualitative study. Interpretive phemenological analysis was then used to analyse the qualitative data. Findings: The hypothesis was accepted that higher family functioning leads to higher perceived self-efficacy. The correlation coefficient of -0.21 suggested a mild correlation between the two variables. However, only 4.6% of the variation in perceived self-efficacy is accounted by the variation in family functioning. The qualitative study extrapolated three themes that might explain the variations in the outliers: (1) level of physical functioning affects perceived self-efficacy, (2) instrumental support from family influenced perceived level of family functioning, and self-efficacy, (3) acceptance of illness reflects higher level of self-efficacy. Conclusion: While family functioning does have an impact on perceived self-efficacy, there are many intrapersonal and physical factors that may affect self-efficacy. The concepts of family functioning and self-efficacy are more appropriately seen as complementing each other to help a patient in managing his illness. Healthcare social workers can look at how family functioning is supporting the individual needs of patients with different trajectory of ESRD and the support we can provide to improve one’s self-efficacy.

Keywords: chronic kidney disease, coping of illness, family functioning, self efficacy

Procedia PDF Downloads 173
2115 Quantitative Analysis of Contract Variations Impact on Infrastructure Project Performance

Authors: Soheila Sadeghi

Abstract:

Infrastructure projects often encounter contract variations that can significantly deviate from the original tender estimates, leading to cost overruns, schedule delays, and financial implications. This research aims to quantitatively assess the impact of changes in contract variations on project performance by conducting an in-depth analysis of a comprehensive dataset from the Regional Airport Car Park project. The dataset includes tender budget, contract quantities, rates, claims, and revenue data, providing a unique opportunity to investigate the effects of variations on project outcomes. The study focuses on 21 specific variations identified in the dataset, which represent changes or additions to the project scope. The research methodology involves establishing a baseline for the project's planned cost and scope by examining the tender budget and contract quantities. Each variation is then analyzed in detail, comparing the actual quantities and rates against the tender estimates to determine their impact on project cost and schedule. The claims data is utilized to track the progress of work and identify deviations from the planned schedule. The study employs statistical analysis using R to examine the dataset, including tender budget, contract quantities, rates, claims, and revenue data. Time series analysis is applied to the claims data to track progress and detect variations from the planned schedule. Regression analysis is utilized to investigate the relationship between variations and project performance indicators, such as cost overruns and schedule delays. The research findings highlight the significance of effective variation management in construction projects. The analysis reveals that variations can have a substantial impact on project cost, schedule, and financial outcomes. The study identifies specific variations that had the most significant influence on the Regional Airport Car Park project's performance, such as PV03 (additional fill, road base gravel, spray seal, and asphalt), PV06 (extension to the commercial car park), and PV07 (additional box out and general fill). These variations contributed to increased costs, schedule delays, and changes in the project's revenue profile. The study also examines the effectiveness of project management practices in managing variations and mitigating their impact. The research suggests that proactive risk management, thorough scope definition, and effective communication among project stakeholders can help minimize the negative consequences of variations. The findings emphasize the importance of establishing clear procedures for identifying, assessing, and managing variations throughout the project lifecycle. The outcomes of this research contribute to the body of knowledge in construction project management by demonstrating the value of analyzing tender, contract, claims, and revenue data in variation impact assessment. However, the research acknowledges the limitations imposed by the dataset, particularly the absence of detailed contract and tender documents. This constraint restricts the depth of analysis possible in investigating the root causes and full extent of variations' impact on the project. Future research could build upon this study by incorporating more comprehensive data sources to further explore the dynamics of variations in construction projects.

Keywords: contract variation impact, quantitative analysis, project performance, claims analysis

Procedia PDF Downloads 40
2114 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 246
2113 Variability Management of Contextual Feature Model in Multi-Software Product Line

Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz

Abstract:

Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.

Keywords: software product line, feature model, variability management, multi-SPLs

Procedia PDF Downloads 69
2112 The Contribution of Corpora to the Investigation of Cross-Linguistic Equivalence in Phraseology: A Contrastive Analysis of Russian and Italian Idioms

Authors: Federica Floridi

Abstract:

The long tradition of contrastive idiom research has essentially been focusing on three domains: the comparison of structural types of idioms (e.g. verbal idioms, idioms with noun-phrase structure, etc.), the description of idioms belonging to the same thematic groups (Sachgruppen), the identification of different types of cross-linguistic equivalents (i.e. full equivalents, partial equivalents, phraseological parallels, non-equivalents). The diastratic, diachronic and diatopic aspects of the compared idioms, as well as their syntactic, pragmatic and semantic properties, have been rather ignored. Corpora (both monolingual and parallel) give the opportunity to investigate the actual use of correlating idioms in authentic texts of L1 and L2. Adopting the corpus-based approach, it is possible to draw attention to the frequency of occurrence of idioms, their syntactic embedding, their potential syntactic transformations (e.g., nominalization, passivization, relativization, etc.), their combinatorial possibilities, the variations of their lexical structure, their connotations in terms of stylistic markedness or register. This paper aims to present the results of a contrastive analysis of Russian and Italian idioms referring to the concepts of ‘beginning’ and ‘end’, that has been carried out by using the Russian National Corpus and the ‘La Repubblica’ corpus. Beyond the digital corpora, bilingual dictionaries, like Skvorcova - Majzel’, Dobrovol’skaja, Kovalev, Čerdanceva, as well as monolingual resources, have been consulted. The study has shown that many of the idioms that have been traditionally indicated as cross-linguistic equivalents on bilingual dictionaries cannot be considered correspondents. The findings demonstrate that even those idioms, that are formally identical in Russian and Italian and are presumably derived from the same source (e.g., conceptual metaphor, Bible, classical mythology, World literature), exhibit differences regarding usage. The ultimate purpose of this article is to highlight that it is necessary to review and improve the existing bilingual dictionaries considering the empirical data collected in corpora. The materials gathered in this research can contribute to this sense.

Keywords: corpora, cross-linguistic equivalence, idioms, Italian, Russian

Procedia PDF Downloads 147
2111 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 392
2110 Analyzing Emerging Scientific Domains in Biomedical Discourse: Case Study Comparing Microbiome, Metabolome, and Metagenome Research in Scientific Articles

Authors: Kenneth D. Aiello, M. Simeone, Manfred Laubichler

Abstract:

It is increasingly difficult to analyze emerging scientific fields as contemporary scientific fields are more dynamic, their boundaries are more porous, and the relational possibilities have increased due to Big Data and new information sources. In biomedicine, where funding, medical categories, and medical jurisdiction are determined by distinct boundaries on biomedical research fields and definitions of concepts, ambiguity persists between the microbiome, metabolome, and metagenome research fields. This ambiguity continues despite efforts by institutions and organizations to establish parameters on the core concepts and research discourses. Further, the explosive growth of microbiome, metabolome, and metagenomic research has led to unknown variation and covariation making application of findings across subfields or coming to a consensus difficult. This study explores the evolution and variation of knowledge within the microbiome, metabolome, and metagenome research fields related to ambiguous scholarly language and commensurable theoretical frameworks via a semantic analysis of key concepts and narratives. A computational historical framework of cultural evolution and large-scale publication data highlight the boundaries and overlaps between the competing scientific discourses surrounding the three research areas. The results of this study highlight how discourse and language distribute power within scholarly and scientific networks, specifically the power to set and define norms, central questions, methods, and knowledge.

Keywords: biomedicine, conceptual change, history of science, philosophy of science, science of science, sociolinguistics, sociology of knowledge

Procedia PDF Downloads 130
2109 Collaborative Stylistic Group Project: A Drama Practical Analysis Application

Authors: Omnia F. Elkommos

Abstract:

In the course of teaching stylistics to undergraduate students of the Department of English Language and Literature, Faculty of Arts and Humanities, the linguistic tool kit of theories comes in handy and useful for the better understanding of the different literary genres: Poetry, drama, and short stories. In the present paper, a model of teaching of stylistics is compiled and suggested. It is a collaborative group project technique for use in the undergraduate diverse specialisms (Literature, Linguistics and Translation tracks) class. Students initially are introduced to the different linguistic tools and theories suitable for each literary genre. The second step is to apply these linguistic tools to texts. Students are required to watch videos performing the poems or play, for example, and search the net for interpretations of the texts by other authorities. They should be using a template (prepared by the researcher) that has guided questions leading students along in their analysis. Finally, a practical analysis would be written up using the practical analysis essay template (also prepared by the researcher). As per collaborative learning, all the steps include activities that are student-centered addressing differentiation and considering their three different specialisms. In the process of selecting the proper tools, the actual application and analysis discussion, students are given tasks that request their collaboration. They also work in small groups and the groups collaborate in seminars and group discussions. At the end of the course/module, students present their work also collaboratively and reflect and comment on their learning experience. The module/course uses a drama play that lends itself to the task: ‘The Bond’ by Amy Lowell and Robert Frost. The project results in an interpretation of its theme, characterization and plot. The linguistic tools are drawn from pragmatics, and discourse analysis among others.

Keywords: applied linguistic theories, collaborative learning, cooperative principle, discourse analysis, drama analysis, group project, online acting performance, pragmatics, speech act theory, stylistics, technology enhanced learning

Procedia PDF Downloads 182
2108 Numerical Analysis Of Stainless Steel Beam To Column Joints With Bolted Flush End Plates

Authors: Takwiir Tahriim Khan, Tausif Khalid, Mohammad Redwan Ahamed, Md Soebur Rahman

Abstract:

The mutual connection in joints has a significant impact on the safe and cost-effective design of steel structures. Generally, the end plates are welded at the end of the beam and columns are bolted with the end plates. Thus, the moment will be transferred at the interface, which is a critical segment at the connection. 3-D Finite Element Models (FEM) has been developed using ABAQUS 2017 software to predict the yield capacity of the end plate connections. The parameters used in this study are the depth, width, and thickness of the end plate, dimensions of the bolt, sectional and material properties of beams and columns. The influence width, depth, and thicknesses of the end plate connection on yield capacity were investigated through parametric studies. The results showed that, for increasing plate thickness from 0.3 inch to 0.8 inch by an increment of 0.1 inch the yield capacity increased by 2.85% on average, for decreasing the end plate depth from 13 inch to 11 inch the yield capacity increased by 25.4 %, and for decreasing the end plate width from 6.5 inch to 5.75 inch the yield capacity increased by 35.4%. Variation in yield capacity was also found by changing the beam and column section. Besides, the numerical results showed a good agreement with published experimental literature with an average variation of less than 8.3 % in yield capacity. So the study allows for a more effective combination of beam, column, and end plate dimensions.

Keywords: steel beam-column joints, finite element analysis, yield moment capacity, parametric study, ABAQUS, bolted joints, flush end plates, moment vs rotation curves

Procedia PDF Downloads 107
2107 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 229
2106 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis

Abstract:

This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.

Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control

Procedia PDF Downloads 167
2105 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 127
2104 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey

Authors: Çağan Alevkayali, Şermin Tağil

Abstract:

Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.

Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization

Procedia PDF Downloads 322
2103 Modeling Depth Averaged Velocity and Boundary Shear Stress Distributions

Authors: Ebissa Gadissa Kedir, C. S. P. Ojha, K. S. Hari Prasad

Abstract:

In the present study, the depth-averaged velocity and boundary shear stress in non-prismatic compound channels with three different converging floodplain angles ranging from 1.43ᶱ to 7.59ᶱ have been studied. The analytical solutions were derived by considering acting forces on the channel beds and walls. In the present study, five key parameters, i.e., non-dimensional coefficient, secondary flow term, secondary flow coefficient, friction factor, and dimensionless eddy viscosity, were considered and discussed. An expression for non-dimensional coefficient and integration constants was derived based on the boundary conditions. The model was applied to different data sets of the present experiments and experiments from other sources, respectively, to examine and analyse the influence of floodplain converging angles on depth-averaged velocity and boundary shear stress distributions. The results show that the non-dimensional parameter plays important in portraying the variation of depth-averaged velocity and boundary shear stress distributions with different floodplain converging angles. Thus, the variation of the non-dimensional coefficient needs attention since it affects the secondary flow term and secondary flow coefficient in both the main channel and floodplains. The analysis shows that the depth-averaged velocities are sensitive to a shear stress-dependent model parameter non-dimensional coefficient, and the analytical solutions are well agreed with experimental data when five parameters are included. It is inferred that the developed model may facilitate the interest of others in complex flow modeling.

Keywords: depth-average velocity, converging floodplain angles, non-dimensional coefficient, non-prismatic compound channels

Procedia PDF Downloads 74
2102 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 285
2101 Maximum Induced Subgraph of an Augmented Cube

Authors: Meng-Jou Chien, Jheng-Cheng Chen, Chang-Hsiung Tsai

Abstract:

Let maxζG(m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. The n-dimensional augmented cube, denoted as AQn, a variation of the hypercube, possesses some properties superior to those of the hypercube. We study the cases when G is the augmented cube AQn.

Keywords: interconnection network, augmented cube, induced subgraph, bisection width

Procedia PDF Downloads 406
2100 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.

Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis

Procedia PDF Downloads 184
2099 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.

Keywords: climate change, ETP, MODIS, GIEC scenarios

Procedia PDF Downloads 100
2098 Inter-Annual Variations of Sea Surface Temperature in the Arabian Sea

Authors: K. S. Sreejith, C. Shaji

Abstract:

Though both Arabian Sea and its counterpart Bay of Bengal is forced primarily by the semi-annually reversing monsoons, the spatio-temporal variations of surface waters is very strong in the Arabian Sea as compared to the Bay of Bengal. This study focuses on the inter-annual variability of Sea Surface Temperature (SST) in the Arabian Sea by analysing ERSST dataset which covers 152 years of SST (January 1854 to December 2002) based on the ICOADS in situ observations. To capture the dominant SST oscillations and to understand the inter-annual SST variations at various local regions of the Arabian Sea, wavelet analysis was performed on this long time-series SST dataset. This tool is advantageous over other signal analysing tools like Fourier analysis, based on the fact that it unfolds a time-series data (signal) both in frequency and time domain. This technique makes it easier to determine dominant modes of variability and explain how those modes vary in time. The analysis revealed that pentadal SST oscillations predominate at most of the analysed local regions in the Arabian Sea. From the time information of wavelet analysis, it was interpreted that these cold and warm events of large amplitude occurred during the periods 1870-1890, 1890-1910, 1930-1950, 1980-1990 and 1990-2005. SST oscillations with peaks having period of ~ 2-4 years was found to be significant in the central and eastern regions of Arabian Sea. This indicates that the inter-annual SST variation in the Indian Ocean is affected by the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events.

Keywords: Arabian Sea, ICOADS, inter-annual variation, pentadal oscillation, SST, wavelet analysis

Procedia PDF Downloads 276
2097 Research and Innovations in Music Teacher Training Programme in Hungary

Authors: Monika Benedek

Abstract:

Improvisation is an integral part of music education programmes worldwide since teachers recognize that improvisation helps to broaden stylistic knowledge, develops creativity and various musical skills, in particular, aural skills, and also motivates to learn music theory. In Hungary, where Kodály concept is a core element of music teacher education, improvisation has been relatively neglected subject in both primary school and classical music school curricula. Therefore, improvisation was an important theme of a one-year-long research project carried out at the Liszt Academy of Music in Budapest. The project aimed to develop the music teacher training programme, and among others, focused on testing how improvisation could be used as a teaching tool to improve students’ musical reading and writing skills and creative musical skills. Teacher-researchers first tested various teaching approaches of improvisation with numerous teaching modules in music lessons at public schools and music schools. Data were collected from videos of lessons and from teachers’ reflective notes. After analysing data and developing teaching modules, all modules were tested again in a pilot course in 30 contact lessons for music teachers. Teachers gave written feedback of the pilot programme, tested two modules by their choice in their own teaching and wrote reflecting comments about their experiences in applying teaching modules of improvisation. The overall results indicated that improvisation could be an innovative approach to teaching various musical subjects, in particular, solfege, music theory, and instrument, either in individual or in group instruction. Improvisation, especially with the application of relative solmisation and singing, appeared to have been a beneficial tool to develop various musicianship skills of students and teachers, in particular, the aural, musical reading and writing skills, and creative musical skills. Furthermore, improvisation seemed to have been a motivating teaching tool to learn music theory by creating a bridge between various musical styles. This paper reports on the results of the research project.

Keywords: improvisation, Kodály concept, music school, public school, teacher training

Procedia PDF Downloads 144
2096 Diurnal Circle of Rainfall and Convective Properties over West and Central Africa

Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue

Abstract:

The need to investigate diurnal weather circles in West Africa is coined in the fact that complex interactions often results from diurnal weather patterns. This study investigates diurnal circles of wind, rainfall and convective properties using six (6) hour interval data from the ERA-Interim and the Tropical Rainfall Measurement Mission (TRMM). The seven distinct zones, used in this work and classified as rainforest (west-coast, dry, Nigeria-Cameroon), Savannah (Nigeria, and Central Africa and South Sudan (CASS)), Sudano-Sahel, and Sahel, were clearly indicated by the rainfall pattern in each zones. Results showed that the land‐ocean warming contrast was more strongly sensitive to seasonal cycle and has been very weak during March-May (MAM) but clearly spelt out during June-September (JJAS). Dipoles of wind convergence/divergence and wet/dry precipitation, between CASS and Nigeria Savannah zones, were identified in morning and evening hours of MAM, whereas distinct night and day anomaly, in the same location of CASS, were found to be consistent during the JJAS season. Diurnal variation of convective properties showed that stratiform precipitation, due to the extremely low occurrence of flashcount climatology, was dominant during morning hours for both MAM and JJAS than other periods of the day. On the other hand, diurnal variation of the system sizes showed that small system sizes were most dominant during the day time periods for both MAM and JJAS, whereas larger system sizes were frequent during the evening, night, and morning hours. The locations of flashcount and system sizes agreed with earlier results that morning and day-time hours were dominated by stratiform precipitation and small system sizes respectively. Most results clearly showed that the eastern locations of Sudano and Sahel were consistently dry because rainfall and precipitation features were predominantly few. System sizes greater than or equal to 800 km² were found in the western axis of the Sudano and Sahel zones, whereas the eastern axis, particularly in the Sahel zone, had minimal occurrences of small/large system sizes. From the results of locations of extreme systems, flashcount greater than 275 in one single system was never observed during the morning (6Z) diurnal, whereas, the evening (18Z) diurnal had the most frequent cases (at least 8) of flashcount exceeding 275 in one single system. Results presented had shown the importance of diurnal variation in understanding precipitation, flashcount, system sizes patterns at diurnal scales, and understanding land-ocean contrast, precipitation, and wind field anomaly at diurnal scales.

Keywords: convective properties, diurnal circle, flashcount, system sizes

Procedia PDF Downloads 132