Search results for: small-strain stiffness
389 Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers
Authors: Hana' Al-Ghanim, Mu'tasim Abdel-Jaber, Maha Alqam
Abstract:
This experimental investigation deals with shear strengthening of reinforced concrete (RC) deep beams using the externally bonded carbon fiber-reinforced polymer (CFRP) composites. The current study, therefore, evaluates the effectiveness of four various configurations for shear strengthening of deep beams with two different types of CFRP materials including sheets and laminates. For this purpose, a total of 10 specimens of deep beams were cast and tested. The shear performance of the strengthened beams is assessed with respect to the cracks’ formation, modes of failure, ultimate strength and the overall stiffness. The obtained results demonstrate the effectiveness of using the CFRP technique on enhancing the shear capacity of deep beams; however, the efficiency varies depending on the material used and the strengthening scheme adopted. Among the four investigated schemes, the highest increase in the ultimate strength is recorded by using the continuous wrap of two layers of CFRP sheets, exceeding a value of 86%, whereas an enhancement of about 36% is achieved by the inclined CFRP laminates.Keywords: deep beams, laminates, shear strengthening, sheets
Procedia PDF Downloads 360388 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior
Authors: Seyed Abolhasan Naeini, Ali Namaei
Abstract:
This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.Keywords: vertical drain, prefabricated, consolidation, embankment
Procedia PDF Downloads 151387 Analysis of Different Resins in Web-to-Flange Joints
Authors: W. F. Ribeiro, J. L. N. Góes
Abstract:
The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.Keywords: engineered wood products, structural resin, wood i-joist, Pinus taeda
Procedia PDF Downloads 278386 Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems
Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell
Abstract:
This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.Keywords: cold formed steel joists, composite action, flooring systems, shear connection
Procedia PDF Downloads 129385 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System
Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee
Abstract:
Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.Keywords: rotating shaft, flexible blades, centrifugal stiffness, stability
Procedia PDF Downloads 265384 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation
Authors: Ahmed S. Abdulrasool
Abstract:
Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall
Procedia PDF Downloads 397383 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method
Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin
Abstract:
Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature
Procedia PDF Downloads 315382 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure
Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail
Abstract:
We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon
Procedia PDF Downloads 540381 Review Paper on Structural Behaviour of Industrial Pallet Rack with Braced and Unbraced Frames
Authors: Sourabh R. Dinde, Rajshekar S. Talikoti
Abstract:
According to the structural point of view Industrial Pallet rack structure can be considered typical steel framed structure. This work presents a general analysis of an industrial pallet rack structure, evaluating the influence of each of the components on the global stability. An analytical study for the sensitivity of pallet rack configuration in linear static equivalent lateral loads. The aim is to braced/unbraced frames were design and their analytical models are to be built in software. The finite element analysis is used to determine axial forces in beam and column, maximum storey displacement and buckling loads on braced/unbraced pallet rack structure. Bracing systems are mostly provided to enhance the stiffness factor of the structures with the seismic loads. Unbraced systems have mostly translational modes of failure and are very flexible due to excessive loads.Keywords: buckling capacity, cold formed steel, finite element analysis, pallets Rrack, seismic design
Procedia PDF Downloads 326380 Effect of Poly Naphthalene Sulfonate Superplasticizer on Constructibility of Roller-Compacted Concrete Pavement
Authors: Chamroeun Chhorn, Seong Jae Hong, Yoon-Ho Cho, Hyun Jong Lee, Seung Woo Lee
Abstract:
The use of Roller-Compacted Concrete Pavement (RCCP) in public and private applications has been increasing steadily in the past few decades due to its cost saving. This eco-concrete pavement shares construction characteristics from asphalt pavement and material characteristics from the conventional concrete pavement. Due to its low binder and water content, the consistency of Roller-Compacted Concrete (RCC) is typically very stiff. Thus, it is crucial to control the consistency of this concrete. Without appropriate consistency, required density may not be achieved in actual construction for RCCP. The purpose of this study is to investigate the effect on Poly Naphtalene Sulfonate (PNS) superplasticizer on the consistency of RCC as well as its compactibility in actual construction. From this study, it was found that PNS superplasticizer can effectively reduce the stiffness of an RCC mixture and maintain it for a sufficient amount of time without compromising its strength properties. Moreover, it was observed from field test specimens that the use of this admixture can also improve the compaction efficiency throughout the whole depth of pavement.Keywords: roller-compacted concrete, consistency, compactibility, poly naphthalene sulfonate superplasticizer
Procedia PDF Downloads 251379 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque
Procedia PDF Downloads 478378 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression
Authors: Siqi Lin, Yangang Zhao
Abstract:
Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency
Procedia PDF Downloads 425377 Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses
Authors: Ki-Yong Oh, Eunji Kwak, Due Su Son, Siheon Jung
Abstract:
A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell.Keywords: force response, LiFePO₄ battery, strain response, stress response, swelling response
Procedia PDF Downloads 170376 Buckling Analysis of Laminated Composite Plates with Central Holes
Authors: Pratyasha Patnaik, A. V. Asha
Abstract:
Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling loadKeywords: buckling, composite plates, cut-out, stress
Procedia PDF Downloads 330375 Hyperelastic Formulation for Orthotropic Materials
Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann
Abstract:
In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.Keywords: finite strain, hyperelastic, invariants, orthotropic
Procedia PDF Downloads 446374 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method
Procedia PDF Downloads 229373 Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer
Authors: Santhosh A. K.
Abstract:
This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible.Keywords: linear thermoelasticity, compressible flow, conjugate heat transfer, monolithic FEM
Procedia PDF Downloads 199372 The Influence of the Form of Grain on the Mechanical Behaviour of Sand
Authors: Mohamed Boualem Salah
Abstract:
The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.Keywords: angularity, eccentricity, shape particle, behavior of soil
Procedia PDF Downloads 414371 Vibration and Parametric Instability Analysis of Delaminated Composite Beams
Authors: A. Szekrényes
Abstract:
This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.Keywords: delamination, free vibration, parametric excitation, sweep excitation
Procedia PDF Downloads 345370 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars
Authors: Jazlah Majeed Sulaiman, Lakshmi P.
Abstract:
Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS
Procedia PDF Downloads 113369 ANA Negative but FANA Positive Patients with Clinical Symptoms of Rheumatic Disease: The Suggestion for Clinicians
Authors: Abdolreza Esmaeilzadeh, Mehri Mirzaei
Abstract:
Objective: Rheumatic disease is a chronic disease that causes pain, stiffness, swelling and limited motion and function of many joints. RA is the most common form of autoimmune arthritis, affecting more than 1.3 million Americans. Of these, about 75% are women. Materials and Methods: This study was formed due to the misconception about ANA test, which is frequently performed with methods based upon solid phase as ELISA. This experiment was conducted on 430 patients, with clinical symptoms that are likely affected with rheumatic diseases, simultaneously by means of ANA and FANA. Results: 36 cases (8.37%) of patients, despite positive ANA, have demonstrated negative results via Indirect Immunofluorescence Assay (IIFA), (false positive). 116 cases (27%) have demonstrated negative ANA results, by means of the ELISA technique, although they had positive IIFA results. Conclusion: Other advantages of IIFA are antibody titration and specific pattern detection that have the capability of distinguishing positive dsDNA results. According to the restrictions and false negative cases, in patients, IIFA test is highly recommended for these disease's diagnosis.Keywords: autoimmune disease, IIFA, EIA, rheumatic disease
Procedia PDF Downloads 499368 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes
Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi
Abstract:
With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.Keywords: energy harvesting, piezoelectric, flutter, wind tunnel
Procedia PDF Downloads 65367 Finite Element Assessment on Bond Behaviour of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency and stiffness on the fatigue life of the FRP-to-concrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model
Procedia PDF Downloads 449366 Performance of Slot-Entry Hybrid Worn Journal Bearing under Turbulent Lubrication
Authors: Nathi Ram, Saurabh K. Yadav
Abstract:
In turbomachinery, the turbulent flow occurs due to the use of high velocity of low kinematic viscosity lubricants and used in many industrial applications. In the present work, the performance of symmetric slot-entry hybrid worn journal bearing under laminar and turbulent lubrication has been investigated. For turbulent lubrication, the Reynolds equation has been modified using Constantinescu turbulent model. This modified equation has been solved using the finite element method. The effect of turbulent lubrication on bearing’s performance has been presented for symmetric hybrid journal bearing. The slot-entry hybrid worn journal bearing under turbulent/laminar regimes have been investigated. It has been observed that the stiffness and damping coefficients are more for the bearing having slot width ratio (SWR) of 0.25 than the bearing with SWR of 0.5 and 0.75 under the turbulent regime. Further, it is also observed that for constant wear depth parameter, stability threshold speed gets increased for bearing operates at slot width ratio 0.25 under turbulent lubrication.Keywords: hydrostatic bearings, journal bearings, restrictors, turbulent flow models, finite element technique
Procedia PDF Downloads 164365 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method
Authors: Kadda Boumediene, Mohamed Ziani
Abstract:
Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape
Procedia PDF Downloads 353364 Design and Analysis of Universal Multifunctional Leaf Spring Main Landing Gear for Light Aircraft
Authors: Meiyuan Zheng, Jingwu He, Yuexi Xiong
Abstract:
A universal multi-function leaf spring main landing gear was designed for light aircraft. The main landing gear combined with the leaf spring, skidding, and wheels enables it to have a good takeoff and landing performance on various grounds such as the hard, snow, grass and sand grounds. Firstly, the characteristics of different landing sites were studied in this paper in order to analyze the load of the main landing gear on different types of grounds. Based on this analysis, the structural design optimization along with the strength and stiffness characteristics of the main landing gear has been done, which enables it to have good takeoff and landing performance on different types of grounds given the relevant regulations and standards. Additionally, the impact of the skidding on the aircraft during the flight was also taken into consideration. Finally, a universal multi-function leaf spring type of the main landing gear suitable for light aircraft has been developed.Keywords: landing gear, multi-function, leaf spring, skidding
Procedia PDF Downloads 268363 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core
Authors: Elif Kalkanli, Constantinos Soutis
Abstract:
The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel
Procedia PDF Downloads 206362 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.Keywords: seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design
Procedia PDF Downloads 98361 Seismic Behaviour of CFST-RC Columns
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance
Procedia PDF Downloads 246360 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90˚/0˚] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of sub-elements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.Keywords: dynamic finite element, localized interface degeneration, proportional damping, state-space modeling
Procedia PDF Downloads 296