Search results for: segmentation analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28102

Search results for: segmentation analysis

27712 3D Finite Element Analysis of Yoke Hybrid Electromagnet

Authors: Hasan Fatih Ertuğrul, Beytullah Okur, Huseyin Üvet, Kadir Erkan

Abstract:

The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper.

Keywords: yoke hybrid electromagnet, 3D finite element analysis, magnetic levitation system, magnetostatic analysis

Procedia PDF Downloads 727
27711 Automatic Registration of Rail Profile Based Local Maximum Curvature Entropy

Authors: Hao Wang, Shengchun Wang, Weidong Wang

Abstract:

On the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of circular arc on the inner or outer side of the rail waist and achieved the high-precision registration of rail profile. Firstly, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting. Then, based on the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window’s maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc. At last, we fit two circle centers as matching reference points based on small circular arcs on both sides and realized the alignment from the measured profile to the standard designed profile. The static experimental results show that the mean and standard deviation of the method are controlled within 0.01mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2mm with high repeatability.

Keywords: curvature entropy, profile registration, rail wear, structured light, train-running

Procedia PDF Downloads 260
27710 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 414
27709 Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler

Authors: Syed Ahzam Tariq, Atharva Modi

Abstract:

This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents.

Keywords: fault tree analysis water tube boiler, fuzzy probability score, failure probability

Procedia PDF Downloads 127
27708 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 350
27707 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 290
27706 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution

Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques

Abstract:

The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.

Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)

Procedia PDF Downloads 296
27705 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 494
27704 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications

Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef

Abstract:

Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.

Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis

Procedia PDF Downloads 458
27703 A Critical Genre Analysis of Negative Parts in CSR Reports

Authors: Shuai Liu

Abstract:

In corporate social responsibility (CSR) reporting, companies are expected to present both the positive and negative parts of the social and environmental impacts of their performance. This study investigates how the companies that listed in fortune 500 respond to this challenge by analyzing the representations of negative part especially the safety performance. It has found that in the level of genre analysis, it presented 3 major moves and 11 steps in terms of the interdiscursivity analysis. It was made up of three dominant discourse.. The study calls for greater focus on the internal and external analysis of the negative aspect of aspects of companies’ self-disclosure.

Keywords: CSR reports, negative parts, critical genre analysis, interdiscursivity

Procedia PDF Downloads 427
27702 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations

Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger

Abstract:

Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.

Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java

Procedia PDF Downloads 336
27701 BingleSeq: A User-Friendly R Package for Single-Cell RNA-Seq Data Analysis

Authors: Quan Gu, Daniel Dimitrov

Abstract:

BingleSeq was developed as a shiny-based, intuitive, and comprehensive application that enables the analysis of single-Cell RNA-Sequencing count data. This was achieved via incorporating three state-of-the-art software packages for each type of RNA sequencing analysis, alongside functional annotation analysis and a way to assess the overlap of differential expression method results. At its current state, the functionality implemented within BingleSeq is comparable to that of other applications, also developed with the purpose of lowering the entry requirements to RNA Sequencing analyses. BingleSeq is available on GitHub and will be submitted to R/Bioconductor.

Keywords: bioinformatics, functional annotation analysis, single-cell RNA-sequencing, transcriptomics

Procedia PDF Downloads 205
27700 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
27699 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain

Authors: Juliza Hidayati, Sawarni Hasibuan

Abstract:

PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.

Keywords: palm oil, value chain, value added, supply chain

Procedia PDF Downloads 371
27698 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics

Procedia PDF Downloads 511
27697 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 279
27696 The Establishment of Probabilistic Risk Assessment Analysis Methodology for Dry Storage Concrete Casks Using SAPHIRE 8

Authors: J. R. Wang, W. Y. Cheng, J. S. Yeh, S. W. Chen, Y. M. Ferng, J. H. Yang, W. S. Hsu, C. Shih

Abstract:

To understand the risk for dry storage concrete casks in the cask loading, transfer, and storage phase, the purpose of this research is to establish the probabilistic risk assessment (PRA) analysis methodology for dry storage concrete casks by using SAPHIRE 8 code. This analysis methodology is used to perform the study of Taiwan nuclear power plants (NPPs) dry storage system. The process of research has three steps. First, the data of the concrete casks and Taiwan NPPs are collected. Second, the PRA analysis methodology is developed by using SAPHIRE 8. Third, the PRA analysis is performed by using this methodology. According to the analysis results, the maximum risk is the multipurpose canister (MPC) drop case.

Keywords: PRA, dry storage, concrete cask, SAPHIRE

Procedia PDF Downloads 212
27695 Static Analysis Deployment Model for Code Quality on Research and Development Projects of Software Development

Authors: Jeong-Hyun Park, Young-Sik Park, Hyo-Teag Jung

Abstract:

This paper presents static analysis deployment model for code quality on R&D Projects of SW Development. The proposed model includes the scope of R&D projects and index for static analysis of source code, operation model and execution process, environments and infrastructure system for R&D projects of SW development. There is the static analysis result of pilot project as case study based on the proposed deployment model and environment, and strategic considerations for success operation of the proposed static analysis deployment model for R&D Projects of SW Development. The proposed static analysis deployment model in this paper will be adapted and improved continuously for quality upgrade of R&D projects, and customer satisfaction of developed source codes and products.

Keywords: static analysis, code quality, coding rules, automation tool

Procedia PDF Downloads 520
27694 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 368
27693 Financial Analysis of Selected Private Healthcare Organizations with Special Referance to Guwahati City, Assam

Authors: Mrigakshi Das

Abstract:

The private sector investments and quantum of money required in this sector critically hinges on the financial risk and returns the sector offers to providers of capital. Therefore, it becomes important to understand financial performance of hospitals. Financial Analysis is useful for decision makers in a variety of settings. Consider the small proprietary hospitals, say, Physicians Clinic. The managers of such clinic need the information that financial statements provide. Attention to Financial Statements of healthcare Organizations can provide answers to questions like: How are they doing? What is their rate of profit? What is their solvency and liquidity position? What are their sources and application of funds? What is their Operational Efficiency? The researcher has studied Financial Statements of 5 Private Healthcare Organizations in Guwahati City.

Keywords: not-for-profit organizations, financial analysis, ratio analysis, profitability analysis, liquidity analysis, operational efficiency, capital structure analysis

Procedia PDF Downloads 549
27692 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian

Authors: D. Beziakina, E. Bulgakova

Abstract:

This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.

Keywords: speech analysis, statistical analysis, speaker recognition, identification of person

Procedia PDF Downloads 470
27691 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing

Procedia PDF Downloads 164
27690 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures

Authors: Dong Wook Lee, Adrian Mistreanu

Abstract:

The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.

Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis

Procedia PDF Downloads 138
27689 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 535
27688 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant

Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang

Abstract:

In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).

Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR

Procedia PDF Downloads 464
27687 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 57
27686 A Process of Forming a Single Competitive Factor in the Digital Camera Industry

Authors: Kiyohiro Yamazaki

Abstract:

This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.

Keywords: digital camera industry, product evolution trajectory, product platform, unification of competitive factors

Procedia PDF Downloads 158
27685 Constructivism Learning Management in Mathematics Analysis Courses

Authors: Komon Paisal

Abstract:

The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.

Keywords: constructivism, learning management, mathematics analysis courses, learning activity

Procedia PDF Downloads 532
27684 Systematic Review of Functional Analysis in Brazil

Authors: Felipe Magalhaes Lemos

Abstract:

Functional behavior analysis is a procedure that has been studied for several decades by behavior analysts. In Brazil, we still have few studies in the area, so it was decided to carry out a systematic review of the articles published in the area by Brazilians. A search was done on the following scientific article registration sites: PsycINFO, ERIC, ISI Web of Science, Virtual Health Library. The research includes (a) peer-reviewed studies that (b) have been carried out in Brazil containing (c) functional assessment as a pre-treatment through (d) experimental procedures, direct or indirect observation and measurement of behavior problems (e) demonstrating a relationship between environmental events and behavior. During the review, 234 papers were found; however, only 9 were included in the final analysis. Of the 9 articles extracted, only 2 presented functional analysis procedures with manipulation of environmental variables, while the other 7 presented different procedures for a descriptive behavior assessment. Only the two studies using "functional analysis" used graphs to demonstrate the prevalent function of the behavior. Other studies described procedures and did not make clear the causal relationship between environment and behavior. There is still confusion in Brazil regarding the terms "functional analysis", "descriptive assessment" and "contingency analysis," which are generally treated in the same way. This study shows that few articles are published with a focus on functional analysis in Brazil.

Keywords: behavior, contingency, descriptive assessment, functional analysis

Procedia PDF Downloads 144
27683 Experiences of Timing Analysis of Parallel Embedded Software

Authors: Muhammad Waqar Aziz, Syed Abdul Baqi Shah

Abstract:

The execution time analysis is fundamental to the successful design and execution of real-time embedded software. In such analysis, the Worst-Case Execution Time (WCET) of a program is a key measure, on the basis of which system tasks are scheduled. The WCET analysis of embedded software is also needed for system understanding and to guarantee its behavior. WCET analysis can be performed statically (without executing the program) or dynamically (through measurement). Traditionally, research on the WCET analysis assumes sequential code running on single-core platforms. However, as computation is steadily moving towards using a combination of parallel programs and multi-core hardware, new challenges in WCET analysis need to be addressed. In this article, we report our experiences of performing the WCET analysis of Parallel Embedded Software (PES) running on multi-core platform. The primary purpose was to investigate how WCET estimates of PES can be computed statically, and how they can be derived dynamically. Our experiences, as reported in this article, include the challenges we faced, possible suggestions to these challenges and the workarounds that were developed. This article also provides observations on the benefits and drawbacks of deriving the WCET estimates using the said methods and provides useful recommendations for further research in this area.

Keywords: embedded software, worst-case execution-time analysis, static flow analysis, measurement-based analysis, parallel computing

Procedia PDF Downloads 324