Search results for: plant classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5610

Search results for: plant classification

5220 A Technical and Economic Feasibility Study of the Use of Concentrating Solar Power (CSP) in Desalination Plants on the Kenyan Coast

Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu

Abstract:

Despite the implementation of a Feed in Tariff (FiT) for solar power plants in Kenya, the uptake and subsequent development of utility scale power plants has been slow. This paper, therefore, proposes a Concentrating Solar Power (CSP) plant configuration that can supply both power to the grid and operate a sea water desalination plant, thus providing an economically viable alternative to Independent Power Producers (IPPs). The largest city on the coast, Mombasa, has a chronic water shortage and authorities are looking to employ desalination plants to supply a deficit of up to 100 million cubic meters of fresh water per day. In this study the desalination plant technology was selected based on an analysis of operational costs in $/m3 of plants that are already running. The output of the proposed CSP plant, Net Present Value (NPV), plant capacity factor, thermal efficiency and quantity of CO2 emission avoided were simulated using Greenius software (Green energy system analysis tool) developed by the institute of solar research at the German Aerospace Center (DLR). Data on solar irradiance were derived from the Solar and Wind Energy Resource Assessment (SWERA) for Kenya.

Keywords: desalination, feed in tariff, independent power producer, solar CSP

Procedia PDF Downloads 285
5219 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu

Abstract:

The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository

Procedia PDF Downloads 291
5218 Control Mechanisms for Sprayer Used in Turkey

Authors: Huseyin Duran, Yesim Benal Oztekin, Kazim Kubilay Vursavus, Ilker Huseyin Celen

Abstract:

There are two main approaches to manufacturing, market and usage of plant protection machinery in Turkey. The first approach is called as ‘Product Safety Approach’ and could be summarized as minimum health and safety requirements of consumer needs on plant protection equipment and machinery products. The second approach is the practices related to the Plant Protection Equipment and Machinery Directive. Product safety approach covers the plant protection machinery product groups within the framework of a new approach directive, Machinery Safety Directive (2006/42 / AT). The new directive is in practice in our country by 03.03.2009, parallel to the revision of the EU Regulation on the Directive (03.03.2009 dated and numbered 27158 published in the Official Gazette). ‘Pesticide Application for Machines’ paragraph is added to the 2006/42 / EC Machinery Safety Directive, which is, in particular, reveals the importance of primary health care and product safety issue, explaining the safety requirements for machines used in the application of plant protection products. The Ministry of Science, Industry and Technology is the authorized organizations in our country for the publication and implementation of this regulation. There is a special regulation, carried out by Ministry of Food, Agriculture and Livestock General Directorate of Food and Control, on the manufacture and sale of plant protection machinery. This regulation, prepared based on 5996 Veterinary Services, Plant Health, Food and Feed Law, is ‘Regulation on Plant Protection Equipment and Machinery’ (published on 02.04.2011 whit number 27893 in the Official Gazette). The purposes of this regulation are practicing healthy and reliable crop production, the preparation, implementation and dissemination of the integrated pest management programs and projects for the development of human health and environmentally friendly pest control methods. This second regulation covers: approval, manufacturing, licensing of Plant Protection Equipment and Machinery; duties and responsibilities of the dealers; principles and procedures related to supply and control of the market. There are no inspection procedures for the application of currently used plant protection machinery in Turkey. In this study, content and application principles of all regulation approaches currently used in Turkey are summarized.

Keywords: plant protection equipment and machinery, product safety, market surveillance, inspection procedures

Procedia PDF Downloads 259
5217 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
5216 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
5215 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 161
5214 Common Orthodontic Indices and Classification in the United Kingdom

Authors: Ashwini Mohan, Haris Batley

Abstract:

An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.

Keywords: classification, indices, orthodontics, validity

Procedia PDF Downloads 151
5213 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
5212 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
5211 Metabolites of Polygonum L. Plants Having Antitumor Properties

Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina

Abstract:

The article represents the results of research of antitumor activity of different structural types of plant flavonoids extracted by authors from Polygonum L. plants in commercial reserves at the territory of the Republic of Kazakhstan. For the first time ever the results comparative research of antitumor activity of plant flavonoids of different structural groups and their synthetic derivatives have been represented. The results of determination of toxicity of flavonoids in single parenteral infusion conditions have been represented. Experimental substantiation of possible mechanisms of antiproliferative and cytotoxic action of flavonoids has been suggested. The perspectives of usage of plant flavonoids as medications and creation of effective dosage forms of antitumor medicines on their basis have been substantiated.

Keywords: antitumor activity, cytotoxicity, flavonoids, Polygonum L., secondary metabolites

Procedia PDF Downloads 260
5210 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
5209 Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions

Authors: Feran Asur

Abstract:

In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design.

Keywords: residential landscape, planting, urban space, visual improvement

Procedia PDF Downloads 140
5208 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 518
5207 Anti-Inflammatory Activity of Lavandula antineae Maire from Algeria

Authors: Soumeya Krimat, Tahar Dob, Aicha Kesouri, Ahmed Nouasri, Hafidha Metidji

Abstract:

Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The objective of this study is to evaluate the anti-inflammatory of hydromethanolic aerial parts extract of Lavandula antineae for the first time using carrageenan-paw edema and croton oil-ear odema models. The plant extract, at the dose of 200 mg/kg, showed a significant anti-inflammatory activity (P˂0.05) in the carrageenan induced edema test in mice, showing 80.74% reduction in the paw thikness comparable to that produced by the standard drug aspirin 83.44% at 4h. When it was applied topically at a dosage of 1 and 2 mg per ear, the percent edema reduction in treated mice was 29.45% and 74.76%, respectively. These results demonstrate that Lavandula antineae Maire extract possess remarkable anti-inflammatory activity, supporting the folkloric usage of the plant to treat various inflammatory and pain diseases.

Keywords: lavandula antineae maire, medicinal plant, anti-inflammatory activity, carrageenan-paw edema, croton oil-ear edema

Procedia PDF Downloads 390
5206 The Potential of Fly Ash Wastes to Improve Nutrient Levels in Agricultural Soils: A Material Flow Analysis Case Study from Riau District, Indonesia

Authors: Hasan Basri Jumin

Abstract:

Fly ash sewage of pulp and paper industries when processed with suitable process and true management may possibly be used fertilizer agriculture purposes. The objective of works is to evaluate re-cycling possibility of fly ash waste to be applied as a fertilizer for agriculture use. Fly ash sewage was applied to maize with 28 g/plant could be increased significantly the average of dry weigh from dry weigh of seed increase from 6.7 g/plant into 10.3 g/plant, and net assimilation rates could be increased from 14.5 mg.m-2.day-1 into 35.4 mg.m-2 day-1. Therefore, production per hectare was reached 3.2 ton/ha. The chemical analyses of fly ash waste indicated that, there are no exceed threshold content of dangerous metals and biology effects. Mercury, arsenic, cadmium, chromium, cobalt, lead, and molybdenum contents as heavy metal are lower than the threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. This experiment indicated that fly ash sewage in lower doses until 28 g/plant could be applied as substitution fertilizer for agriculture use and it could be eliminate the environment pollution.

Keywords: fly-ash, fertilizer, maize, sludge-sewage pollutant, waste

Procedia PDF Downloads 582
5205 Enrichment of the Antioxidant Activity of Decaffeinated Assam Green Tea by Herbal Plant: A Synergistic Effect

Authors: Abhijit Das, Runu Chakraborty

Abstract:

Tea is the most widely consumed beverage aside from water; it is grown in about 30 countries with a per capita worldwide consumption of approximately 0.12 liter per year. Green tea is of growing importance with its antioxidant contents associated with its health benefits. The various extraction methods can influence the polyphenol concentrations of green tea. The purpose of the study was to quantify the polyphenols, flavonoid and antioxidant activity of both caffeinated and decaffeinated form of tea manufactured commercially in Assam, North Eastern part of India. The results display that phenolic/flavonoid content well correlated with antioxidant activity which was performed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability of plasma) assay. After decaffeination there is a decrease in the polyphenols concentration which also affects the antioxidant activity of green tea. For the enrichment of antioxidant activity of decaffeinated tea a herbal plant extract is used which shows a synergistic effect between green tea and herbal plant phenolic compounds.

Keywords: antioxidant activity, decaffeination, green tea, flavonoid content, phenolic content, plant extract

Procedia PDF Downloads 347
5204 Theoretical Discussion on the Classification of Risks in Supply Chain Management

Authors: Liane Marcia Freitas Silva, Fernando Augusto Silva Marins, Maria Silene Alexandre Leite

Abstract:

The adoption of a network structure, like in the supply chains, favors the increase of dependence between companies and, by consequence, their vulnerability. Environment disasters, sociopolitical and economical events, and the dynamics of supply chains elevate the uncertainty of their operation, favoring the occurrence of events that can generate break up in the operations and other undesired consequences. Thus, supply chains are exposed to various risks that can influence the profitability of companies involved, and there are several previous studies that have proposed risk classification models in order to categorize the risks and to manage them. The objective of this paper is to analyze and discuss thirty of these risk classification models by means a theoretical survey. The research method adopted for analyzing and discussion includes three phases: The identification of the types of risks proposed in each one of the thirty models, the grouping of them considering equivalent concepts associated to their definitions, and, the analysis of these risks groups, evaluating their similarities and differences. After these analyses, it was possible to conclude that, in fact, there is more than thirty risks types identified in the literature of Supply Chains, but some of them are identical despite of be used distinct terms to characterize them, because different criteria for risk classification are adopted by researchers. In short, it is observed that some types of risks are identified as risk source for supply chains, such as, demand risk, environmental risk and safety risk. On the other hand, other types of risks are identified by the consequences that they can generate for the supply chains, such as, the reputation risk, the asset depreciation risk and the competitive risk. These results are consequence of the disagreements between researchers on risk classification, mainly about what is risk event and about what is the consequence of risk occurrence. An additional study is in developing in order to clarify how the risks can be generated, and which are the characteristics of the components in a Supply Chain that leads to occurrence of risk.

Keywords: sisks classification, survey, supply chain management, theoretical discussion

Procedia PDF Downloads 633
5203 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 157
5202 Density Interaction in Determinate and Indeterminate Faba Bean Types

Authors: M. Abd El Hamid Ezzat

Abstract:

Two field trials were conducted to study the effect of plant densities i.e., 190, 222, 266, 330 and 440 10³ plants ha⁻¹ on morphological characters, physiological and yield attributes of two faba bean types viz. determinate (FLIP-87 -117 strain) and indeterminate (c.v. Giza-461). The results showed that the indeterminate plants significantly surpassed the determinate plants in plant height at 75 and 90 days from sowing, number of leaves at all growth stages and dry matter accumulation at 45 and 90 days from sowing. Determinate plants possessed greater number of side branches than that of the indeterminate plants, but it was only significant at 90 days from sowing. Greater number of flowers were produced by the indeterminate plants than that of the determinate plants at 75 and 90 days from sowing, and although shedding was obvious in both types, it was greater in the determinate plants as compared with the indeterminate one at 90 days from sowing. Increasing plant density resulted in reductions in number of leaves, branches flowers and dry matter accumulation per plant of both faba bean types. However, plant height criteria took a reversible magnitude. Moreover, under all rates of plant densities the indeterminate type plants surpassed the determinate plants in all growth characters studied except for number of branches per plant at 90 days from sowing. The indeterminate plant leaves significantly contained greater concentrations of photosynthetic pigments i.e., chl. a, b and carotenoids than those found in the determinate plant leaves. Also, the data showed significant reduction in photosynthetic pigments concentration as planting density increases. Light extinction coefficient (K) values reached their maximum level at 60 days from sowing, then it declined sharply at 75 days from sowing. The data showed that the illumination inside the determinate faba bean canopies was better than the indeterminate plants. (K) values tended to increase as planting density increases, meanwhile, significant interactions were reported between faba bean type as planting density on (K) at all growth stages. Both of determinate and indeterminate faba bean plant leaves reached their maximum expansion at 75 days from sowing reflecting the highest LAI values, then their declined in the subsequent growth stage. The indeterminate faba bean plants significantly surpassed the determinate plants in LAI up to 75 days from sowing. Growth analysis showed that NAR, RGR and CGR reached their maximum rates at (60-75 days growth stage). Faba bean types did not differ significantly in NAR at the early growth stage. The indeterminate plants were able to grow faster with significant CGR values than the determinate plants. The indeterminate faba bean plants surpassed the determinate ones in number of seeds/pod and per plant, 100-seed weight, seed yield per plant and per hectare at all rates of plant density. Seed yield increased with increasing plant densities of both types. The highest seed yield was attained for both types 440 103 plants ha⁻¹.

Keywords: determinate, indeterminate faba bean, Physiological attributes, yield attributes

Procedia PDF Downloads 236
5201 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques

Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri

Abstract:

Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.

Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology

Procedia PDF Downloads 155
5200 Efficacy of Plant Extracts on Insect Pests of Watermelon and Their Effects on Nutritional Contents of the Fruits

Authors: Fatai Olaitan Alao, Thimoty Abiodun Adebayo, Oladele Abiodun Olaniran

Abstract:

This experiment was conducted at Ladoke Akintola University of Technology, Ogbomoso, Teaching and Research farm during the major and minor planting season , 2017 to determine the effects of Annona squamosa (Linn.) and Moringa oleifera (Lam) extracts on insect pests of watermelon and their effects on nutritional contents of watermelon fruits. Synthetic insecticide and untreated plots were included in the treatments for comparison. Selected plants were prepared with cold water and each plant extracts was applied at three different concentrations (5,10 and 20% v/v). Data were collected on population density of insect pests, number of aborted fruits, number of defoliated flowers , the yield was calculated in t/ha, nutritional and fatty acid contents were determine using gas chromatography. The results show that the two major insects were observed - Diabrotica undicimpunctata and Dacus cucurbitea. The tested plant extracts had about 65% control of the observed insect pests when compared with the control and the two plant extracts had the same insecticidal efficacy. However, the applied plant extracts at 20% v/v had higher insecticidal effects than the other tested concentrations. Significant higher yield was observed on the plant extracts treated plants compared with untreated plants which had the least yield() but none of the plant extracts performed effectively as Lambdachyalothrin in the control of insect pests and yield. Meanwhile, the tested plant extracts significantly improved the proximate and fatty acid contents of watermelon fruits while Lambdachyalothrin contributed negatively to the nutritional contents of watermelon fruits. Therefore, A. squpmosa and M. oleifera can be used in the management of insect pests and to improve the nutritional contents of the watermelon especially in the organic farming system.

Keywords: Annona squamosa, Dacus cucubitea, Diabrotical undicimpunctata, Moringa oleifera, watermelon

Procedia PDF Downloads 125
5199 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
5198 Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass

Authors: A. H. Tadevosyan, S. K. Mayrapetyan, N. B. Tavakalyan, K. I. Pyuskyulyan, A. H. Hovsepyan, S. N. Sergeeva

Abstract:

Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up.

Keywords: radioceaseum, Japanese basil, polymer, soil-plant system

Procedia PDF Downloads 183
5197 The Introduction of Medicine Plants in Bogor Agricultural University: A Case Study in Cikabayan and Tropical Medicinal Plant Conservation Laboratory

Authors: Eki Devung, Eka Tyastutik, Indha Annisa, Digdaya Anoraga, Jamaluddin Arsyad

Abstract:

Plant medicine is a whole species of plants are known to have medicinal properties. Bogor Agricultural University has high biodiversity, one of which flora potential as a drug. This study was conducted from 19 September to 10 October 2016 at Bogor Agricultural University using literature study and field observation. There are 85 species of medicinal plants which include a medicinal plant cultivation and wild plants. Family herbs most commonly found in Cikabayan that while the Euphorbiaceae, family which is found in the Tropical Medicinal Plant Conservation Laboratory is the family of Achantaceae. Species of medicinal plants is dominated by herbs and shrubs. Part herbs most widely used are the leaves. The diversity of diseases that can be treated with medicine plants include digestive system diseases and metabolic disorder.

Keywords: benefits, biodiversity, Bogor Agricultural University, medicinal plants

Procedia PDF Downloads 358
5196 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
5195 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph

Procedia PDF Downloads 306
5194 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review

Procedia PDF Downloads 162
5193 Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

Authors: D. Visuwan, B. Phruksaphanrat

Abstract:

In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It is found that the proposed cellular layout can generate better performances than the current layout. In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout.

Keywords: layout, electronic manufacturing service plant, computer simulation, cellular manufacturing system

Procedia PDF Downloads 306
5192 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
5191 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 318