Search results for: neural stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5416

Search results for: neural stem cells

5026 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 499
5025 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 612
5024 Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC

Authors: Thidarat Duangyod, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin.

Keywords: pentace burmanica, (+)-catechin, (-)-epicatechin, high performance liquid chromatography

Procedia PDF Downloads 452
5023 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 653
5022 STEAM and Project-Based Learning: Equipping Young Women with 21st Century Skills

Authors: Sonia Saddiqui, Maya Marcus

Abstract:

UTS STEAMpunk Girls is an educational program for young women (aged 12-16), to empower them to be more informed and active members of the 21st century workforce. With the number of STEM graduates on the decline, especially among young women, an additional aim of the program is to trial a STEAM (Science, Technology, Engineering, Arts/Humanities/Social Sciences, Mathematics), inter-disciplinary approach to improving STEM engagement. In-line with UNESCO’s recent focus on promoting ‘transversal competencies’ in future graduates, the program utilised co-design, project-based learning, entrepreneurial processes, and inter-disciplinary learning. The program consists of two phases. Taking a participatory design approach, the first phase (co-design workshops) provided valuable insight into student perspectives around engaging young women in STEM and inter-disciplinary thinking. The workshops positioned 26 young women from three schools as subject matter experts (SMEs), providing a platform for them to share their opinions, experiences and findings around the STEAM disciplines. The second (pilot) phase put the co-design phase findings into practice, with 64 students from four schools working in groups to articulate problems with real-world implications, and utilising design-thinking to solve them. The pilot phase utilised project-based learning to engage young women in entrepreneurial and STEAM frameworks and processes. Scalable program design and educational resources were trialed to determine appropriate mechanisms for engaging young women in STEM and in STEAM thinking. Across both phases, data was collected via longitudinal surveys to obtain pre-program, baseline attitudinal information, and compare that against post-program responses. Preliminary findings revealed students’ improved understanding of the STEM disciplines, industries and professions, improved awareness of STEAM as a concept, and improved understanding regarding inter-disciplinary and design thinking. Program outcomes will be of interest to high-school educators in both STEM and the Arts, Humanities and Social Sciences fields, and will hopefully inform future programmatic approaches to introducing inter-disciplinary STEAM learning in STEM curriculum.

Keywords: co-design, STEM, STEAM, project-based learning, inter-disciplinary

Procedia PDF Downloads 197
5021 Exploring Deep Neural Network Compression: An Overview

Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart

Abstract:

The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.

Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition

Procedia PDF Downloads 42
5020 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 135
5019 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 176
5018 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree

Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba

Abstract:

The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.

Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible

Procedia PDF Downloads 324
5017 Max-Entropy Feed-Forward Clustering Neural Network

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.

Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models

Procedia PDF Downloads 433
5016 Application of Neural Petri Net to Electric Control System Fault Diagnosis

Authors: Sadiq J. Abou-Loukh

Abstract:

The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.

Keywords: petri net, neural petri net, electric control system, fault diagnosis

Procedia PDF Downloads 472
5015 Comparison of Phenolic and Urushiol Contents of Different Parts of Rhus verniciflua and Their Antimicrobial Activity

Authors: Jae Young Jang, Jong Hoon Ahn, Jae-Woong Lim, So Young Kang, Mi Kyeong Lee

Abstract:

Rhus verniciflua is commonly known as a lacquer tree in Korea. Stem barks of R. verniciflua have been used as an immunostimulator in traditional medicine. It contains phenolic compounds and is known for diverse biological activities such as antioxidant and antimicrobial activity. However, it also causes allergic dermatitis due to urushiols derivatives. For the development of active natural resources with less toxicity, the content of phenolic compounds and urushiols of different parts of R. verniciflua such as stem barks, lignum and leaves were quantitated by colorimetric assay and HPLC analysis. The urushiols content were the highest in stem barks, and followed by leaves. The lignum contained trace amount of urushiols. The phenolic contents, however, were the most abundant in lignum, and followed by leaves and stem barks. These results clear showed that the content of urushiols and phenolic differs depending on the parts of R. verniciflua. Antimicrobial activity of different parts of R. verniciflua against fish pathogenic bacteria was also investigated using Edwardsiella tarda. Lignum of R. verniciflua was the most effective in antimicrobial activity against E. tarda and phenolic constituents are suggested to be active constituents for activity. Taken together, phenolic compounds are responsible for antimicrobial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antimicrobial activity with less toxicity. Therefore, lignum of R. verniciflua are suggested as good sources for antimicrobial activity against fish bacterial diseases.

Keywords: different parts, phenolic compounds, Rhus verniciflua, urushiols

Procedia PDF Downloads 318
5014 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 227
5013 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 732
5012 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 463
5011 Natural Honey and Effect on the Activity of the Cells

Authors: Abujnah Dukali

Abstract:

Natural honey was assessed in cell culture system for its anticancer activity. Human leukemic cell line HL 60 was treated with honey and cultured for 5 days and cytotoxicity was calculated by MTT assay. Honey showed cytotoxicity with CC50 value of 174.20 µg/ml. Radical modulation activities was assessed by lipid peroxidation assay using egg lecithin. Honey showed antioxidant activity with EC50 value of 159.73 µg/ml. In addition, treatment with HL60 cells also resulted in nuclear DNA fragmentation, as seen in agarose gel electrophoresis. This is a hallmark of cells undergoing apoptosis. Confirmation of apoptosis was performed by staining the cells with Annexin V and FACS analysis. Apoptosis is an active, genetically regulated disassembly of the cell form within. Disassembly creates changes in the phospholipid content of the cytoplasmic membrane outer leaflet. Phosphatidylserine (PS) is translocated from the inner to the outer surface of the cell for phagocytic cell recognition. The human anticoagulant, annexin V, is a Ca2+-dependent phospholipid protein with a high affinity for PS. Annexin V labeled with fluorescein can identify apoptotic cells in the population It is a confirmatory test for apoptosis. Annexin V-positive cells were defined as apoptotic cells. Since honey shows both antioxidant activity and cytotoxicity at almost the same concentration, it can prevent the free radical induced cancer as prophylactic agent and kill the cancer cells by apoptotic process as a chemotherapeutic agent. Everyday intake of honey can prevent the cancer induction.

Keywords: anticancer, cells, DNA, honey

Procedia PDF Downloads 204
5010 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 83
5009 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 86
5008 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 149
5007 Neural Changes Associated with Successful Antidepressant Treatment in Adolescents with Major Depressive Disorder

Authors: Dung V. H. Pham, Kathryn Cullen

Abstract:

Introduction: 40% of adolescents with major depression (MDD) are unresponsive to 1st line antidepressant treatment. The neural mechanism underlying treatment-responsive and treatment-resistant depression in adolescent are unclear. Amygdala is important for emotion processing and has been implicated in mood disorders. Past research has shown abnormal amygdala connectivity in adolescents with MDD. This research study changes in amygdala resting-state functional connectivity to find neural correlates of successful antidepressant treatment. Methods: Thirteen adolescents aged 12-19 underwent rfMRI before and after 8-week antidepressant treatment and completed BDI-II at each scan. A whole-brain approach, using anatomically defined amygdala ROIs (1) identified brain regions that are highly synchronous with the amygdala, (2) correlated neural changes with changes in overall depression and specific symptom clusters within depression. Results: Some neural correlates were common across domains: (1) decreased amygdala RSFC with the default mode network (posterior cingulate, precuneus) is associated with improvement in overall depression and many symptom clusters, (2) increased amygdala RSFC with fusiform gyrus is associated with symptom improvement across many symptom clusters. We also found unique neural changes associated with symptom improvement in each symptom cluster. Conclusion: This is the first preliminary study that looks at neural correlates of antidepressant treatment response to overall depression as well as different clusters of symptoms of depression. The finding suggests both overlapping and distinct neural mechanisms underlying improvement in each symptom clusters within depression. Some brain regions found are also implicated in MDD among adults in previous literature.

Keywords: depression, adolescents, fMRI, antidepressants

Procedia PDF Downloads 251
5006 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 117
5005 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 69
5004 In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice

Authors: K. Yadamma, K. Rudrama Devi

Abstract:

The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells.

Keywords: ginger extract, protection, bone marrow cells, swiss albino mice

Procedia PDF Downloads 436
5003 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.

Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error

Procedia PDF Downloads 199
5002 Erythrophagocytic Role of Mast Cells in vitro and in vivo during Oxidative Stress

Authors: Priyanka Sharma, Niti Puri

Abstract:

Anemia develops when blood lacks enough healthy erythrocytes. Past studies indicated that anemia, inflammatory process, and oxidative stress are interconnected. Erythrocytes are continuously exposed to reactive oxygen species (ROS) during circulation, due to normal aerobic cellular metabolism and also pathology of inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells have been shown to affect anaemia. In the present study, we attempted to reveal whether mast cells have a direct role in clearance or erythrophagocytosis of normal or oxidatively damaged erythrocytes. Murine erythrocytes were treated with tert-butyl hydroperoxidase (t-BHP), an agent that induces oxidative damage and mimics in vivo oxidative stress. Normal and oxidatively damaged erythrocytes were labeled with carboxyfluorescein succinimidyl ester (CFSE) to track erythrophagocytosis. We show, for the first time, direct erythrophagocytosis of oxidatively damaged erythrocytes in vitro by RBL-2H3 mast cells as well as in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significant increase in the uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Hence, our study provides important evidence for involvement of mast cells in severe anemia due to inflammation and oxidative stress and might be helpful to circumvent the adverse anemic disorders.

Keywords: mast cells, anemia, erythrophagocytosis, oxidatively damaged erythrocytes

Procedia PDF Downloads 253
5001 The Development of Student Core Competencies through the STEM Education Opportunities in Classroom

Authors: Z. Dedovets, M. Rodionov

Abstract:

The goal of the modern education system is to prepare students to be able to adapt to ever-changing life situations. They must be able to acquire required knowledge independently; apply such knowledge in practice to solve various problems by using modern technologies; think critically and creatively; competently use information; be communicative, work in a team; and develop their own moral values, intellect and cultural awareness. As a result, the status of education significantly increases; new requirements to its quality have been formed. In recent years, the competency-based approach in education has become of significant interest. This approach is a strengthening of applied and practical characteristics of a school education and leads to the forming of the key students’ competencies which define their success in future life. In this article, the authors’ attention focuses on a range of key competencies, educational, informational and communicative and on the possibility to develop such competencies via STEM education. This research shows the change in students’ attitude towards scientific disciplines such as mathematics, general science, technology and engineering as a result of STEM education. Two-staged analyzes questionnaires completed by students of forms II to IV in the republic of Trinidad and Tobago allowed the authors to categorize students between two levels that represent students’ attitude to various disciplines. The significance of differences between selected levels was confirmed with the use of Pearsons’ chi-squared test. In summary, the analysis of obtained data makes it possible to conclude that STEM education has a great potential for development of core students’ competencies and encourages the development of positive student attitude towards the above mentioned above scientific disciplines.

Keywords: STEM, science, technology, engineering, mathematics, students’ competency, Pearson's chi-squared test

Procedia PDF Downloads 385
5000 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 109
4999 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 113
4998 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 387
4997 Assessing Storage of Stability and Mercury Reduction of Freeze-Dried Pseudomonas putida within Different Types of Lyoprotectant

Authors: A. A. M. Azoddein, Y. Nuratri, A. B. Bustary, F. A. M. Azli, S. C. Sayuti

Abstract:

Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage in 4oC without vacuum. Polyethylene glycol (PEG) pre-treated freeze dry cells and broth pre-treated freeze dry cells after freeze-dry recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introduce freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 56.78% and 17.91%. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks were 26.35% and 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been growth in agar. Result from this study may be beneficial and useful as initial reference before commercialize freeze-dried P. putida.

Keywords: Pseudomonas putida, freeze-dry, PEG, tween80/Sucrose, mercury, cell viability

Procedia PDF Downloads 353