Search results for: multivariate regression tree
4070 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method
Authors: Muhammad Shoaib, Hassan M Al-Swaidan
Abstract:
Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry
Procedia PDF Downloads 2804069 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 3974068 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness
Procedia PDF Downloads 3094067 Effectiveness of ISSR Technique in Revealing Genetic Diversity of Phaseolus vulgaris L. Representing Various Parts of the World
Authors: Mohamed El-Shikh
Abstract:
Phaseolus vulgaris L. is the world’s second most important bean after soybeans; used for human food and animal feed. It has generally been linked to reduced risk of cardiovascular disease, diabetes mellitus, obesity, cancer and diseases of digestive tract. The effectiveness of ISSR in achievement of the genetic diversity among 60 common bean accessions; represent various germplasms around the world was investigated. In general, the studied Phaseolus vulgaris accessions were divided into 2 major groups. All of the South-American accessions were separated into the second major group. These accessions may have different genetic features that are distinct from the rest of the accessions clustered in the major group. Asia and Europe accessions (1-20) seem to be more genetically similar (99%) to each other as they clustered in the same sub-group. The American and African varieties showed similarities as well and clustered in the same sub-tree group. In contrast, Asian and American accessions No. 22 and 23 showed a high level of genetic similarities, although these were isolated from different regions. The phylogenetic tree showed that all the Asian accessions (along with Australian No. 59 and 60) were similar except Indian and Yemen accessions No. 9 and 20. Only Netherlands accession No. 3 was different from the rest of European accessions. Morocco accession No. 52 was genetically different from the rest of the African accessions. Canadian accession No. 44 seems to be different from the other North American accessions including Guatemala, Mexico and USA.Keywords: phylogenetic tree, Phaseolus vulgaris, ISSR technique, genetics
Procedia PDF Downloads 4094066 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: bootstrap, edgeworth approximation, IID, quantile
Procedia PDF Downloads 1594065 Normalized Laplacian Eigenvalues of Graphs
Authors: Shaowei Sun
Abstract:
Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph.Keywords: graph, normalized Laplacian eigenvalues, normalized Laplacian matrix, tree
Procedia PDF Downloads 3284064 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 484063 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1044062 Cytotoxic Effect of Neem Seed Extract (Azadirachta indica) in Comparison with Artificial Insecticide Novastar on Haemocytes (THC and DHC) of Musca domestica
Authors: Muhammad Zaheer Awan, Adnan Qadir, Zeeshan Anjum
Abstract:
Housefly, Musca domestica Linnaeus is ubiquitous and hazardous for Homo sapiens and livestock in sundry venerations. Musca domestica cart 100 different pathogens, such as typhoid, salmonella, bacillary dysentery, tuberculosis, anthrax and parasitic worms. The flies in rural areas usually carry more pathogens. Houseflies feed on liquid or semi-liquid substances besides solid materials which are softened by saliva. Neem botanically known as Azadirachta indica belongs to the family Meliaceae and is an indigenous tree to Pakistan. The neem tree is also one such tree which has been revered by the Pakistanis and Kashmiris for its medicinal properties. Present study showed neem seed extract has potentially toxic ability that affect Total Haemocyte Count (THC) and Differential Haemocytes Count (DHC) in insect’s blood cells, of the housefly. A significant variation in haemolymph density was observed just after application, 30 minutes and 60 minutes post treatment in term of THC and DHC in comparison with novastar. The study strappingly acclaim use of neem seed extract as insecticide as compare to artificial insecticides.Keywords: neem, Azadirachta indica, Musca domestica, differential haemocyte count (DHC), total haemocytes count (DHC), novastar
Procedia PDF Downloads 2054061 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors
Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui
Abstract:
Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.Keywords: data-driven method, process control, anomaly detection, dimensionality reduction
Procedia PDF Downloads 2994060 Ecotourism Development in Ikogosi Warmspring, Nigeria: Implications on Its Floristic Composition and Structure
Authors: Oluwatobi Emmanuel Olaniyi, Babafemi George Ogunjemite
Abstract:
The high rate of infrastructural development in Ikogosi warm spring towards harnessing her great ecotourism potentials calls for a serious concern, as more forest areas are been opened up for public access and the landscape is modified. On this note, we investigated the implication of ecotourism development on the floristic composition and forest structure in Ikogosi. The study aimed at identifying the past and present status of infrastructural development, assessing and comparing the floristic composition and structure of the built- up/ recreational areas and undisturbed forested areas, to infer on the impact of ecotourism development on the study site. We conducted stakeholder interview and field observation to identify the past and present status of infrastructural development respectively. A total of ten quadrants were employed in the vegetation assessment to characterize the woody tree species composition, diameter at breast height and height, to obtain mean indices characterizing each part of the site. These indices were compared using T – test analysis. A total of 49 different woody tree species distributed in 21 families were identified in the built-in/ recreational areas while 67 different woody tree species belonging to 25 families were recorded in the undeveloped forested areas. Although, the latter has a higher mean diameter at breast height of woody trees, it was not significantly different from the former (T-test = -0.74, p = 0.46). On the contrary, the built-up area had a higher mean trees height than the undeveloped areas, but the difference was not statistically significant (T-test= 1.04, p = 0.30). Despite these, the slight reduction in richness and diversity of the woody tree species in the built- up/ recreational areas implies mitigating the negative effects of infrastructural development on the warm spring's vegetation.Keywords: ecosystem services, forest structure, vegetation assessment, warm-spring
Procedia PDF Downloads 5114059 Determinant Factor of Farm Household Fruit Tree Planting: The Case of Habru Woreda, North Wollo
Authors: Getamesay Kassaye Dimru
Abstract:
The cultivation of fruit tree in degraded areas has two-fold importance. Firstly, it improves food availability and income, and secondly, it promotes the conservation of soil and water improving, in turn, the productivity of the land. The main objectives of this study are to identify the determinant of farmer's fruit trees plantation decision and to major fruit production challenges and opportunities of the study area. The analysis was made using primary data collected from 60 sample household selected randomly from the study area in 2016. The primary data was supplemented by data collected from a key informant. In addition to the descriptive statistics and statistical tests (Chi-square test and t-test), a logit model was employed to identify the determinant of fruit tree plantation decision. Drought, pest incidence, land degradation, lack of input, lack of capital and irrigation schemes maintenance, lack of misuse of irrigation water and limited agricultural personnel are the major production constraints identified. The opportunities that need to further exploited are better access to irrigation, main road access, endowment of preferred guava variety, experience of farmers, and proximity of the study area to research center. The result of logit model shows that from different factors hypothesized to determine fruit tree plantation decision, age of the household head accesses to market and perception of farmers about fruits' disease and pest resistance are found to be significant. The result has revealed important implications for the promotion of fruit production for both land degradation control and rehabilitation and increasing the livelihood of farming households.Keywords: degradation, fruit, irrigation, pest
Procedia PDF Downloads 2384058 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4234057 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 3574056 Location Privacy Preservation of Vehicle Data In Internet of Vehicles
Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman
Abstract:
Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme
Procedia PDF Downloads 1804055 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4664054 Effect of Peg-6000-induced Drought Stress on the Germination of Moringa Stenopetala Seeds
Authors: Khater Nadia, Garah Kenza
Abstract:
Moringa stenopetala is a rapidly growing, unappreciated tree regarded as the "miracle tree" for its food, feed, and medicinal benefits. It appears to be a versatile and promising species for use under changing conditions. To evaluate the effect of water stress on germination seeds of M. stenopetala, three different concentrations PEG- 6000 (4, 8, and 12 per cent) along with a control in a factorial experiment based on a completely randomized design with five replications. The results revealed that water potential significantly reduced germination rate (82.5%) and average germination time. Germination speed in T3 by 93%, kinetics germination in T2 (39), germination index in T2 (102) and germination vigor index in T2 (91.25) were increased in the osmotic potential of PEG solution. By following these steps, we can improve the chances of successful germination of M. stenopetala seeds under water stress conditionsKeywords: moringa stenopetala, PEG, water stress, rate
Procedia PDF Downloads 134053 Examining Contraceptive Ideational Disparities Among Adolescents and Young Women in Nigeria using Multivariate Analysis
Authors: Oluwayemisi D. Ishola, Lekan Ajijola
Abstract:
Nigeria faces a demographic challenge characterized by a burgeoning youth population and an escalating fertility rate. A notable decline in the use of modern contraceptives among adolescent girls and young women compounds the challenge. The youthful demographic stands at a critical juncture in the nation's pursuit to fulfill its pledge of achieving a 27% modern contraceptive rate by 2030, embodying the potential to translate this ambitious commitment into a tangible reality. This research undertook a multi-dimensional examination to scrutinize contraceptive ideational disparities among adolescents and young women in Nigeria, with a particular emphasis on ideational factors. The data underpinning this study were drawn from a cross-sectional household survey carried out in the Nigerian states of Edo, Ogun, Plateau, and Niger between October 2019 and January 2020. The survey encompassed 2,857 sexually active women aged 15-24 years. Employing an ideational framework focusing on behavior that accentuates psychosocial factors, the study dissected nine unique ideational variables into three principal domains: social, cognitive, and emotional. Multivariate logistics regression analyses were used to assess associations between ideational elements and contraceptive use within the total sample and specific age brackets (adolescents of 15-19 years and youth of 20-24 years). For this study, a p-value less than 0.05 was considered indicative of statistical significance. The study's results revealed significant associations between the ideational variables and contraceptive use in total sample and among adolescent and youth, ranging from p < .05 to p < .001. The influence of each domain's predictors on Family Planning (FP) manifested variations when assessed separately and across the different age groups. Notably, cognitive and emotional domains were found to be the strongest predictor of contraceptive use when compared with social domains in the general sample and among youth. This study’s findings highlight the complex interplay of social, cognitive, and emotional factors in contraceptive use among young individuals. Understanding these dynamics is crucial in developing effective strategies to overcome barriers and improve access to contraceptive services among young women in Nigeria.Keywords: adolescents, contraception, ideation, youth
Procedia PDF Downloads 724052 Giving Right-of-Way to Emergency Ambulances: Attitude and Behavior of Road Users in Developing Countries
Authors: Mahmoud T. Alwidyan, Ahmad Alrawashdeh, Alaa O. Oteir
Abstract:
Background: Emergency medical service (EMS) providers, oftentimes, use the lights and sirens (L&S) of their ambulances to warn road users, navigate through traffic, and expedite transport to save lives of ill and injured patients. Despite the contribution of road users in the effectiveness of reducing transport time of EMS ambulances using L&S, there is a lack of empirical assessments exploring the road user’s attitude and behavior in such situations. This study, therefore, aimed to assess the attitude and behavior of road users in response to EMS ambulances with warning L&S in use. Methods: This was a cross-sectional survey developed and distributed to adult road users in Northern Jordan. The questionnaire included 20 items addressing demographics, attitudes, and behavior toward emergency ambulances. We described the participants’ responses and assessed the association between demographics and attitude statements using logistic regression. Results: A total of 1302 questionnaires were complete and appropriate for analysis. The mean age was 34.2 (SD± 11.4) years, and the majority were males (72.6%). About half of road users (47.9%) in our sample would perform inappropriate action in response to EMS ambulances with L&S in use. The multivariate logistic regression model show that being female (OR, 0.63; 95% CI = 0.48-0.81), more educated (OR, 0.68; 95% CI = 0.53-0.86), or public transport driver (OR, 0.55; 95% CI = 0.34-0.90) is significantly associated with inappropriate response to EMS ambulances. Additionally, a significant proportion of road users may perform inappropriate and lawless driving practices such as crossing red traffic lights or following the passing by EMS ambulances, which would, in turn, increase the risk on ambulances and other road users. Conclusions: A large proportion of road users in Jordan may respond inappropriately to the EMS ambulances, and many engage in risky driving behaviors due perhaps to the lack of procedural knowledge. Policy-related interventions and educational programs are crucially needed to increase public awareness of the traffic law concerning EMS ambulances and to enhance appropriate driving behavior, which, in turn, improves the efficiency of ambulance services.Keywords: EMS ambulances, lights and sirens, road users, attitude and behavior
Procedia PDF Downloads 904051 Exploring the Relationships between Cyberbullying Perceptions and Facebook Attitudes of Turkish Students
Authors: Yavuz Erdoğan, Hidayet Çiftçi
Abstract:
Cyberbullying, a phenomenon among adolescents, is defined as actions that use information and communication technologies such as social media to support deliberate, repeated, and hostile behaviour by an individual or group. With the advancement in communication and information technology, cyberbullying has expanded its boundaries among students in schools. Thus, parents, psychologists, educators, and lawmakers must become aware of the potential risks of this phenomenon. In the light of these perspectives, this study aims to investigate the relationships between cyberbullying perception and Facebook attitudes of Turkish students. A survey method was used for the study and the data were collected by “Cyberbullying Perception Scale”, “Facebook Attitude Scale” and “Personal Information Form”. For this purpose, study has been conducted during 2014-2015 academic year, with a total of 748 students with 493 male (%65.9) and 255 female (%34.1) from randomly selected high schools. In the analysis of data Pearson correlation and multiple regression analysis, multivariate analysis of variance (MANOVA) and Scheffe post hoc test has been used. At the end of the study, the results displayed a negative correlation between Turkish students’ Facebook attitudes and cyberbullying perception (r=-.210; p<0.05). In order to identify the predictors of students’ cyberbullying perception, multiple regression analysis was used. As a result, significant relations were detected between cyberbullying perception and independent variables (F=5.102; p<0.05). Independent variables together explain 11.0% of the total variance in cyberbullying scores. The variables that significantly predict the students’ cyberbullying perception are Facebook attitudes (t=-5.875; p<0.05), and gender (t=3.035; p<0.05). In order to calculate the effects of independent variables on students’ Facebook attitudes and cyberbullying perception MANOVA was conducted. The results of the MANOVA indicate that the Facebook attitudes and cyberbullying perception were significantly differed according to students’ gender, age, educational attainment of the mother, educational attainment of the father, income of the family and daily usage of internet.Keywords: facebook, cyberbullying, attitude, internet usage
Procedia PDF Downloads 4024050 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States
Authors: Yakubu Suleiman, S. A. Musa
Abstract:
Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.Keywords: coefficient, constant, inputs, regression
Procedia PDF Downloads 4104049 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)
Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma
Abstract:
Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust
Procedia PDF Downloads 4144048 Ketones Emission during Pad Printing Process
Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Oros B. Ivana, Kecić S. Vesna, Djogo Z. Maja
Abstract:
The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2.Keywords: acetone, methyl ethyl ketone, multiple linear regression analysis, pad printing
Procedia PDF Downloads 4214047 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1704046 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 4884045 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method
Authors: J. Satya Eswari, Ch. Venkateswarlu
Abstract:
The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization
Procedia PDF Downloads 4094044 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences
Procedia PDF Downloads 4644043 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1524042 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5424041 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 156