Search results for: medical imaging analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30879

Search results for: medical imaging analysis

30489 The Impact of COVID-19 Waste on Aquatic Organisms: Nano/microplastics and Molnupiravir in Salmo trutta Embryos and Lervae

Authors: Živilė Jurgelėnė, Vitalijus Karabanovas, Augustas Morkvėnas, Reda Dzingelevičienė, Nerijus Dzingelevičius, Saulius Raugelė, Boguslaw Buszewski

Abstract:

The short- and long-term effects of COVID-19 antiviral drug molnupiravir and micro/nanoplastics on the early development of Salmo trutta were investigated using accumulation and exposure studies. Salmo trutta were used as standardized test organisms in toxicity studies of COVID-19 waste contaminants. The 2D/3D imaging was performed using confocal fluorescence spectral imaging microscopy to assess the uptake, bioaccumulation, and distribution of molnupiravir and micro/nanoplastics complex in live fish. Our study results demonstrated that molnupiravir may interact with a micro/nanoplastics and modify their spectroscopic parameters and toxicity to S. trutta embryos and larvae. The 0.2 µm size microplastics at a concentration of 10 mg/L were found to be stable in aqueous media than 0.02 µm, and 2 µm sizes polymeric particles. This study demonstrated that polymeric particles can adsorb molnupiravir that are present in mixtures and modify the accumulation of molnupiravir in Salmo trutta embryos and larvae. In addition, 2D/3D confocal fluorescence imaging showed that the single polymeric particle hardly accumulates and couldn't penetrate outer tissues of the tested organism. However, co-exposure micro/nanoplastics and molnupiravir could significantly enhance the polymeric particles capability of accumulating on surface tissues and penetrating surface tissue of fish in early development. Exposure to molnupiravir at 2 g/L concentration and co-exposure to micro/nanoplastics and molnupiravir did not bring about survival changes in in the early stages of Salmo trutta development, but we observed the reduction in heart rate and decrease in gill ventilation. The statistical analysis confirmed that micro/nanoplastics used in combination with molnupiravir enhance the toxicity of the latter micro/nanoplastics to embryos and larvae. This research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: fish, micro/nanoplastics, molnupiravir, toxicity

Procedia PDF Downloads 95
30488 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 542
30487 A Study of the Effects of Nurse Innovation on Service Quality and Service Experience

Authors: Rhay-Hung Weng, Ching-Yuan Huang, Wan-Ping Chen

Abstract:

Recently, many hospitals have put much emphasis upon the development of nurse innovation. The present study aimed to clarify how nurse innovation is related to medical service quality and medical service experience. This study adopted questionnaire-survey method with nurses and customers of the inpatient wards from three Taiwanese hospitals as the research subjects. After pairing, there were 294 valid questionnaires. Hierarchical regression analysis was utilized to test the possible impact of nurse innovation on medical service quality and experience. In terms of the dimensions of nurse innovation, “innovation behavior” ranked the highest (3.24), followed by knowledge creation and innovation diffusion; in terms of the degree of the medical service quality, 'reliability' ranked the highest (4.35). As for the degree of the medical service experience, 'feel experience' ranked the highest (4.44). All dimensions of nurse innovation have no significant effects on medical service quality and medical service experience. Of these three dimensions of nurse innovation, the level of innovation behavior was perceived by the nurses as the highest. The study found that nurse innovation has no significant effects on medical service quality and medical service experience. Managers shall provide sufficient resources and budget for fostering innovation development and encourage their nurses to develop nursing innovation for patents. The education and training courses on “patient-centered ” shall be enhanced among hospital nurses. Health care managers shall also explore the difficulties about innovation diffusion and find the solutions for nurses.

Keywords: innovation, employee innovative behavior, service quality, service experience

Procedia PDF Downloads 336
30486 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 448
30485 Imaging Based On Bi-Static SAR Using GPS L5 Signal

Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan

Abstract:

GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.

Keywords: GPS, L5 Signal, SAR, spatial resolution

Procedia PDF Downloads 534
30484 Non-Invasive Evaluation of Patients After Percutaneous Coronary Revascularization. The Role of Cardiac Imaging

Authors: Abdou Elhendy

Abstract:

Numerous study have shown the efficacy of the percutaneous intervention (PCI) and coronary stenting in improving left ventricular function and relieving exertional angina. Furthermore, PCI remains the main line of therapy in acute myocardial infarction. Improvement of procedural techniques and new devices have resulted in an increased number of PCI in those with difficult and extensive lesions, multivessel disease as well as total occlusion. Immediate and late outcome may be compromised by acute thrombosis or the development of fibro-intimal hyperplasia. In addition, progression of coronary artery disease proximal or distal to the stent as well as in non-stented arteries is not uncommon. As a result, complications can occur, such as acute myocardial infarction, worsened heart failure or recurrence of angina. In a stent, restenosis can occur without symptoms or with atypical complaints rendering the clinical diagnosis difficult. Routine invasive angiography is not appropriate as a follow up tool due to associated risk and cost and the limited functional assessment. Exercise and pharmacologic stress testing are increasingly used to evaluate the myocardial function, perfusion and adequacy of revascularization. Information obtained by these techniques provide important clues regarding presence and severity of compromise in myocardial blood flow. Stress echocardiography can be performed in conjunction with exercise or dobutamine infusion. The diagnostic accuracy has been moderate, but the results provide excellent prognostic stratification. Adding myocardial contrast agents can improve imaging quality and allows assessment of both function and perfusion. Stress radionuclide myocardial perfusion imaging is an alternative to evaluate these patients. The extent and severity of wall motion and perfusion abnormalities observed during exercise or pharmacologic stress are predictors of survival and risk of cardiac events. According to current guidelines, stress echocardiography and radionuclide imaging are considered to have appropriate indication among patients after PCI who have cardiac symptoms and those who underwent incomplete revascularization. Stress testing is not recommended in asymptomatic patients, particularly early after revascularization, Coronary CT angiography is increasingly used and provides high sensitive for the diagnosis of coronary artery stenosis. Average sensitivity and specificity for the diagnosis of in stent stenosis in pooled data are 79% and 81%, respectively. Limitations include blooming artifacts and low feasibility in patients with small stents or thick struts. Anatomical and functional cardiac imaging modalities are corner stone for the assessment of patients after PCI and provide salient diagnostic and prognostic information. Current imaging techniques cans serve as gate keeper for coronary angiography, thus limiting the risk of invasive procedures to those who are likely to benefit from subsequent revascularization. The determination of which modality to apply requires careful identification of merits and limitation of each technique as well as the unique characteristic of each individual patient.

Keywords: coronary artery disease, stress testing, cardiac imaging, restenosis

Procedia PDF Downloads 168
30483 Research on Adaptable Development Strategy of Medical Architecture Based on the Background of Current Era

Authors: Jiani Gao, Qingping Luo, Xinlei Fang

Abstract:

In order to try to achieve better rights and interests for both doctors and patients in the new medical environment, the paper will focus on the renewal and development of medical buildings. In today's highly developed society, many factors have a profound guiding significance for the development of medical buildings. By doing social research, the paper has found that these factors come from all aspects. These factors include the optimization of traditional medical model, rapid alternation of medical technology and equipment, the reform of the social, medical security system, changes in the age structure of the population, the birth of intelligent medical care under the Internet, and the deepening of the concept of green sustainable building development, etc. The purpose of this paper is to capture sensitively these various factors that may affect the evolution of medical buildings in the context of the current era, and to put forward, by using an adaptable development strategy, some feasible suggestions on the design of medical buildings when facing these changes and challenges. Specifically speaking, the adaptable development strategy includes some basic principles and methods, such as using modular design, adopting scalable streamline, selecting a long-span structural system and using replaceable materials and components, etc.

Keywords: medical architecture, adaptable development, medical model, space design

Procedia PDF Downloads 157
30482 Advanced Magnetic Resonance Imaging in Differentiation of Neurocysticercosis and Tuberculoma

Authors: Rajendra N. Ghosh, Paramjeet Singh, Niranjan Khandelwal, Sameer Vyas, Pratibha Singhi, Naveen Sankhyan

Abstract:

Background: Tuberculoma and neurocysticercosis (NCC) are two most common intracranial infections in developing country. They often simulate on neuroimaging and in absence of typical imaging features cause significant diagnostic dilemmas. Differentiation is extremely important to avoid empirical exposure to antitubercular medications or nonspecific treatment causing disease progression. Purpose: Better characterization and differentiation of CNS tuberculoma and NCC by using morphological and multiple advanced functional MRI. Material and Methods: Total fifty untreated patients (20 tuberculoma and 30 NCC) were evaluated by using conventional and advanced sequences like CISS, SWI, DWI, DTI, Magnetization transfer (MT), T2Relaxometry (T2R), Perfusion and Spectroscopy. rCBV,ADC,FA,T2R,MTR values and metabolite ratios were calculated from lesion and normal parenchyma. Diagnosis was confirmed by typical biochemical, histopathological and imaging features. Results: CISS was most useful sequence for scolex detection (90% on CISS vs 73% on routine sequences). SWI showed higher scolex detection ability. Mean values of ADC, FA,T2R from core and rCBV from wall of lesion were significantly different in tuberculoma and NCC (P < 0.05). Mean values of rCBV, ADC, T2R and FA for tuberculoma and NCC were (3.36 vs1.3), (1.09x10⁻³vs 1.4x10⁻³), (0.13 x10⁻³ vs 0.09 x10⁻³) and (88.65 ms vs 272.3 ms) respectively. Tuberculomas showed high lipid peak, more choline and lower creatinine with Ch/Cr ratio > 1. T2R value was most significant parameter for differentiation. Cut off values for each significant parameters have proposed. Conclusion: Quantitative MRI in combination with conventional sequences can better characterize and differentiate similar appearing tuberculoma and NCC and may be incorporated in routine protocol which may avoid brain biopsy and empirical therapy.

Keywords: advanced functional MRI, differentiation, neurcysticercosis, tuberculoma

Procedia PDF Downloads 567
30481 Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography

Authors: Keerthilatha Pai, Sakshi Kamra

Abstract:

Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen.

Keywords: cone beam computed tomography, mandibular canal, reformatted panoramic radiograph, visualization

Procedia PDF Downloads 127
30480 Effect of Operative Stabilization on Rib Fracture Healing in Porcine Experimental Model: A Pilot Study

Authors: Maria Stepankova, Lucie Vistejnova, Pavel Klein, Tereza Blassova, Marketa Slajerova, Radek Sedlacek, Martin Bartos, Jaroslav Chlupac

Abstract:

Background: Clinical outcome benefits of the segment rib fracture surgical therapy are well known and follow from better stabilization of the chest wall. Despite this, some authors still incline to conservative therapy and point out to possible rib fracture healing failure in connection with the bone vascular supply disturbance caused by metal plate implantation. This suggestion met neither experimental nor clinical verification and remains the object of discussion. In our pilot study we investigated the titanium plate fixation effect on the rib fracture healing in porcine model and its histological, biomechanical and radiological aspects. Materials and Method: Two porcine models (experimental group) underwent the operative chest wall stabilization with a titanium plate implantation after osteotomy. Two other porcine models (control group) were treated conservatively after osteotomy. Three weeks after surgery, all animals were sacrificed, treated ribs were explanted and the histological analysis, µCT imaging and biomechanical testing of the calluses tissue were performed. Results: In µCT imaging, experimental group showed a higher cortical bone volume compared to the control group. Histological analysis using the non-decalcified bone tissue blocks demonstrated more maturated callus with higher newly-formed osseous tissue ratio in experimental group in comparison to controls. In contrast, no significant differences in bone blood vessels supply in both groups were observed. This finding suggests that the bone blood supply in experimental group was not impaired. Biomechanical analysis using 3-point bending test demonstrated significantly higher bending stiffness and the maximum force in experimental group. Conclusion: Based on our observation, it could be concluded, that the titanium plate fixation of the rib fractures leads to faster bone callus maturation whereas does not cause the vascular supply impairment after 3 weeks and thus has a beneficial effect on the rib fracture healing.

Keywords: bone vascular supply, chest wall stabilization, fracture healing, histological analysis, titanium plate implantation

Procedia PDF Downloads 141
30479 Revealing Single Crystal Quality by Insight Diffraction Imaging Technique

Authors: Thu Nhi Tran Caliste

Abstract:

X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations.

Keywords: rocking curve imaging, X-ray diffraction, defect, distortion

Procedia PDF Downloads 131
30478 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 47
30477 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 392
30476 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 299
30475 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 92
30474 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 223
30473 Magnetic Resonance Imaging for Assessment of the Quadriceps Tendon Cross-Sectional Area as an Adjunctive Diagnostic Parameter in Patients with Patellofemoral Pain Syndrome

Authors: Jae Ni Jang, SoYoon Park, Sukhee Park, Yumin Song, Jae Won Kim, Keum Nae Kang, Young Uk Kim

Abstract:

Objectives: Patellofemoral pain syndrome (PFPS) is a common clinical condition characterized by anterior knee pain. Here, we investigated the quadriceps tendon cross-sectional area (QTCSA) as a novel predictor for the diagnosis of PFPS. By examining the association between the QTCSA and PFPS, we aimed to provide a more valuable diagnostic parameter and more equivocal assessment of the diagnostic potential of PFPS by comparing the QTCSA with the quadriceps tendon thickness (QTT), a traditional measure of quadriceps tendon hypertrophy. Patients and Methods: This retrospective study included 30 patients with PFPS and 30 healthy participants who underwent knee magnetic resonance imaging. T1-weighted turbo spin echo transverse magnetic resonance images were obtained. The QTCSA was measured on the axial-angled phases of the images by drawing outlines, and the QTT was measured at the most hypertrophied quadriceps tendon. Results: The average QTT and QTCSA for patients with PFPS (6.33±0.80 mm and 155.77±36.60 mm², respectively) were significantly greater than those for healthy participants (5.77±0.36 mm and 111.90±24.10 mm2, respectively; both P<0.001). We used a receiver operating characteristic curve to confirm the sensitivities and specificities for both the QTT and QTCSA as predictors of PFPS. The optimal diagnostic cutoff value for QTT was 5.98 mm, with a sensitivity of 66.7%, a specificity of 70.0%, and an area under the curve of 0.75 (0.62–0.88). The optimal diagnostic cutoff value for QTCSA was 121.04 mm², with a sensitivity of 73.3%, a specificity of 70.0%, and an area under the curve of 0.83 (0.74–0.93). Conclusion: The QTCSA was found to be a more reliable diagnostic indicator for PFPS than QTT.

Keywords: patellofemoral pain syndrome, quadriceps muscle, hypertrophy, magnetic resonance imaging

Procedia PDF Downloads 50
30472 MRI Findings in Children with Intrac Table Epilepsy Compared to Children with Medical Responsive Epilepsy

Authors: Susan Amirsalari, Azime Khosrinejad, Elham Rahimian

Abstract:

Objective: Epilepsy is a common brain disorder characterized by a persistent tendency to develop in neurological, cognitive, and psychological contents. Magnetic Resonance Imaging (MRI) is a neuroimaging test facilitating the detection of structural epileptogenic lesions. This study aimed to compare the MRI findings between patients with intractable and drug-responsive epilepsy. Material & methods: This case-control study was conducted from 2007 to 2019. The research population encompassed all 1-16- year-old patients with intractable epilepsy referred to the Shafa Neuroscience Center (n=72) (a case group) and drug-responsive patients referred to the pediatric neurology clinic of Baqiyatallah Hospital (a control group). Results: There were 72 (23.5%) patients in the intractable epilepsy group and 200 (76.5%) patients in the drug-responsive group. The participants' mean age was 6.70 ±4.13 years, and there were 126 males and 106 females in this study Normal brain MRI was noticed in 21 (29.16%) patients in the case group and 184 (92.46%) patients in the control group. Neuronal migration disorder (NMD)was also exhibited in 7 (9.72%) patients in the case group and no patient in the control group. There were hippocampal abnormalities and focal lesions (mass, dysplasia, etc.) in 10 (13.88%) patients in the case group and only 1 (0.05%) patient in the control group. Gliosis and porencephalic cysts were presented in 3 (4.16%) patients in the case group and no patient in the control group. Cerebral and cerebellar atrophy was revealed in 8 (11.11%) patients in the case group and 4 (2.01%) patients in the control group. Corpus callosum agenesis, hydrocephalus, brain malacia, and developmental cyst were more frequent in the case group; however, the difference between the groups was not significant. Conclusion: The MRI findings such as hippocampal abnormalities, focal lesions (mass, dysplasia), NMD, porencephalic cysts, gliosis, and atrophy are significantly more frequent in children with intractable epilepsy than in those with drug-responsive epilepsy.

Keywords: magnetic resonance imaging, intractable epilepsy, drug responsive epilepsy, neuronal migrational disorder

Procedia PDF Downloads 45
30471 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 20
30470 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring

Authors: Sang Hun Park, Chul Gyu Song

Abstract:

Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.

Keywords: thrombus, fluorescence, femoral, arteries

Procedia PDF Downloads 344
30469 Brain Bleeding Venous Malformation in the Computed Tomography Emergency Department

Authors: Angelis P. Barlampas

Abstract:

The aim of this work is to denote that during an emergency state, an examination study may not be accomplished by state-of-the-art of imaging and, therefore, cannot obviously reveal all the existing findings. But, such a situation may have disastrous consequences for the patient. When interpreting radiological images, one must try to be as meticulous as possible, especially if the patient has alerting clinical symptoms. A case may be missed because its findings are not so obvious in rapid uncompleted radiological imaging. A thirty-seven years old female patient visited the emergency department because of a headache and hemiparesis of her left leg. Firstly, a CT examination without contrast was done, and mild serpentinous hyperintensities were depicted at the right parietal lobe. In addition to that, there was a linear, mildly hyperattenuating structure resembling a vessel in the nearby middle line. At first, an AVM was suspected, so an MRI examination with i.v. Gd was prescribed. The patient returned a few days later, not having done the MRI and complaining of persisting symptomatology. A new CT examination without and with i.v.c administration was done that showed no hyperintensities but a type-enhancing vessel in the posterior interhemispheric fissure. The latest findings are consistent with a venous malformation with previous bleeding.

Keywords: bleeding, brain, CNS, hemorrhage, CT, venous malformation

Procedia PDF Downloads 122
30468 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 93
30467 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 271
30466 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes

Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka

Abstract:

Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.

Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering

Procedia PDF Downloads 301
30465 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 203
30464 Phenomenological Analysis on the Experience of Volunteer Activities in Pre-Medical School Students

Authors: S. J. Yune, K. H. Park

Abstract:

The purpose of this study was to understand the experiences of medical students in volunteer activities and to draw implications for medical education. For this purpose, the questionnaire and the reflection essay on the volunteer experience of 54 students in the first year and 57 students in the second year were analyzed and analyzed. As a result, the participation of the students in the volunteer activities was the highest in the first semester and once a month in the second grade. Activities were mostly through volunteer organizations. The essence of the volunteering activities experience revealed through reflection essays was 'I want to avoid with fear' and 'I feel far away' in the recognition before volunteering activities. In terms of knowledge after participating in volunteer activities, 'breaking eggs and getting to know the world' and 'intellectual growth through social experience' appeared. In terms of attitude, it revealed 'deep reflection on me and others', 'understanding of service life'. And in terms of behavior, 'Begin preparing for a life of service' appeared. The results of this study revealed that volunteering activities provide students with opportunities for growth and development. In order to obtain more meaningful results, consciousness education related to social service should be done in advance.

Keywords: volunteering activity, pre-medical school student, reflection essay, qualitative analysis

Procedia PDF Downloads 186
30463 Non-Invasive Imaging of Human Tissue Using NIR Light

Authors: Ashwani Kumar

Abstract:

Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function.

Keywords: NIR light, tissue, blurring, Monte Carlo simulation

Procedia PDF Downloads 493
30462 A Prospective Study of a Clinically Significant Anatomical Change in Head and Neck Intensity-Modulated Radiation Therapy Using Transit Electronic Portal Imaging Device Images

Authors: Wilai Masanga, Chirapha Tannanonta, Sangutid Thongsawad, Sasikarn Chamchod, Todsaporn Fuangrod

Abstract:

The major factors of radiotherapy for head and neck (HN) cancers include patient’s anatomical changes and tumour shrinkage. These changes can significantly affect the planned dose distribution that causes the treatment plan deterioration. A measured transit EPID images compared to a predicted EPID images using gamma analysis has been clinically implemented to verify the dose accuracy as part of adaptive radiotherapy protocol. However, a global gamma analysis dose not sensitive to some critical organ changes as the entire treatment field is compared. The objective of this feasibility study is to evaluate the dosimetric response to patient anatomical changes during the treatment course in HN IMRT (Head and Neck Intensity-Modulated Radiation Therapy) using a novel comparison method; organ-of-interest gamma analysis. This method provides more sensitive to specific organ change detection. Random replanned 5 HN IMRT patients with causes of tumour shrinkage and patient weight loss that critically affect to the parotid size changes were selected and evaluated its transit dosimetry. A comprehensive physics-based model was used to generate a series of predicted transit EPID images for each gantry angle from original computed tomography (CT) and replan CT datasets. The patient structures; including left and right parotid, spinal cord, and planning target volume (PTV56) were projected to EPID level. The agreement between the transit images generated from original CT and replanned CT was quantified using gamma analysis with 3%, 3mm criteria. Moreover, only gamma pass-rate is calculated within each projected structure. The gamma pass-rate in right parotid and PTV56 between predicted transit of original CT and replan CT were 42.8%( ± 17.2%) and 54.7%( ± 21.5%). The gamma pass-rate for other projected organs were greater than 80%. Additionally, the results of organ-of-interest gamma analysis were compared with 3-dimensional cone-beam computed tomography (3D-CBCT) and the rational of replan by radiation oncologists. It showed that using only registration of 3D-CBCT to original CT does not provide the dosimetric impact of anatomical changes. Using transit EPID images with organ-of-interest gamma analysis can provide additional information for treatment plan suitability assessment.

Keywords: re-plan, anatomical change, transit electronic portal imaging device, EPID, head, and neck

Procedia PDF Downloads 216
30461 Profile and Care of Stroke Patients in Angola: Preliminary Results of a Longitudinal Two-Center Study

Authors: L. José, S. Vieira, E. Melo, A. R. Pinheiro

Abstract:

Objectives: This study aims to characterize the stroke profile and the health care provided for people with a stroke in Luanda, Angola. Methods: A prospective longitudinal study was conducted at two Health centers, from March to November 2023, enrolling stroke patients. Data was gathered using a survey created by the researchers and validated by a health panel of experts from Angola. The analysis focused on demographic and stroke characteristics, as well as the care provided. Ethical approval and informed consent were obtained. Results: Preliminary results of a total of 186 patients are described, 122 from a Central Acute Care Hospital, with a mean age of 51.3±14.35 years old, a BMI of 26.7±4.15 kg/m2, 41% male, and 64 patients from a Rehabilitation Center, with 55.6±11.55 years old, a BMI of 27.0±3.8 kg/m2, 53% male. Ischemic stroke was reported as the most representative type in both centers (71.3% and 70.3%, respectively), though 100% of patients had no imaging diagnosis confirmation, neither data about the subtype was given. For patients admitted to the Hospital, discharge occurred before rehabilitation, and no follow-up was possible. No rehabilitation care was delivered in the first 7 days after the stroke. In the Rehabilitation Center, patient’s rehabilitation started in the late subacute phase, after a mean of 171.8±11.5 days. Conclusions: Stroke diagnosis lacks imaging confirmation, which is decisive for proper treatment, and rehabilitation starts during the late subacute phase, which is too late considering the international guidelines and the best window of opportunity for neuroplasticity and recovery. These results highlight the urgent need for the definition of Stroke-directed Health Care Policies in Angola.

Keywords: stroke, personalized health care, functional recovery, quality of life, health policies

Procedia PDF Downloads 24
30460 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413