Search results for: hierarchal regression analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29211

Search results for: hierarchal regression analysis

28821 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers

Authors: Oluwatosin M. A. Jesuyon

Abstract:

In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.

Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight

Procedia PDF Downloads 203
28820 Exploring the Relationships between Cyberbullying Perceptions and Facebook Attitudes of Turkish Students

Authors: Yavuz Erdoğan, Hidayet Çiftçi

Abstract:

Cyberbullying, a phenomenon among adolescents, is defined as actions that use information and communication technologies such as social media to support deliberate, repeated, and hostile behaviour by an individual or group. With the advancement in communication and information technology, cyberbullying has expanded its boundaries among students in schools. Thus, parents, psychologists, educators, and lawmakers must become aware of the potential risks of this phenomenon. In the light of these perspectives, this study aims to investigate the relationships between cyberbullying perception and Facebook attitudes of Turkish students. A survey method was used for the study and the data were collected by “Cyberbullying Perception Scale”, “Facebook Attitude Scale” and “Personal Information Form”. For this purpose, study has been conducted during 2014-2015 academic year, with a total of 748 students with 493 male (%65.9) and 255 female (%34.1) from randomly selected high schools. In the analysis of data Pearson correlation and multiple regression analysis, multivariate analysis of variance (MANOVA) and Scheffe post hoc test has been used. At the end of the study, the results displayed a negative correlation between Turkish students’ Facebook attitudes and cyberbullying perception (r=-.210; p<0.05). In order to identify the predictors of students’ cyberbullying perception, multiple regression analysis was used. As a result, significant relations were detected between cyberbullying perception and independent variables (F=5.102; p<0.05). Independent variables together explain 11.0% of the total variance in cyberbullying scores. The variables that significantly predict the students’ cyberbullying perception are Facebook attitudes (t=-5.875; p<0.05), and gender (t=3.035; p<0.05). In order to calculate the effects of independent variables on students’ Facebook attitudes and cyberbullying perception MANOVA was conducted. The results of the MANOVA indicate that the Facebook attitudes and cyberbullying perception were significantly differed according to students’ gender, age, educational attainment of the mother, educational attainment of the father, income of the family and daily usage of internet.

Keywords: facebook, cyberbullying, attitude, internet usage

Procedia PDF Downloads 402
28819 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 422
28818 Ethical Leadership and Individual Creativity: The Mediating Role of Psychological Safety

Authors: Hyeondal Jeong, Yoonjung Baek

Abstract:

This study examines the relationship between ethical leadership and individual creativity and focused on mediating effects of psychological safety. In order to clarify the mechanism of ethical leadership, psychological safety of the members was set as a mediator. Using data gathered from a sample of 150 employees. For data analysis, exploratory factor analysis, correlation analysis, hierarchical regression analysis and Sobel-Test were performed. The results showed that ethical leadership had a positive effect on psychological safety and individual creativity, and psychological safety had a positive mediating effect. Since the mediating effect of psychological safety has been confirmed, we need to find ways to improve the psychological safety of the members in terms of organizational management. Psychological safety has a positive effect on individual creativity, which can have a positive impact on innovation throughout the organization.

Keywords: ethical leadership, creativity, psychological safety, ethics management, innovative behaviors

Procedia PDF Downloads 249
28817 Predicting Marital Burnout Based on Irrational Beliefs and Sexual Dysfunction of Couples

Authors: Elnaz Bandeh

Abstract:

This study aimed to predict marital burnout based on irrational beliefs and sexual dysfunction of couples. The research method was descriptive-correlational, and the statistical population included all couples who consulted to counseling clinics in the fall of 2016. The sample consisted of 200 people who were selected by convenience sampling and answered the Ahwaz Irrational Beliefs Questionnaire, Pines Couple Burnout, and Hudson Marital Satisfaction Questionnaire. The data were analyzed using regression coefficient. The results of regression analysis showed that there was a linear relationship between irrational beliefs and couple burnout and dimensions of helplessness toward change, expectation of approval from others, and emotional irresponsibility were positive and significant predictors of couple burnout. However, after avoiding the problem of power, it was not a significant predictor of marital dissatisfaction. There was also a linear relationship between sexual dysfunction and couple burnout, and sexual dysfunction was a positive and significant predictor of couple burnout. Based on the findings, it can be concluded that irrational beliefs and sexual dysfunction play a role in couple dysfunction.

Keywords: couple burnout, irrational beliefs, sexual dysfunction, marital relationship

Procedia PDF Downloads 156
28816 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models

Authors: Nada Slimane, Foued Theljani, Faouzi Bouani

Abstract:

The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.

Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression

Procedia PDF Downloads 182
28815 Mindfulness as a Predictor of School Results and Well-Being in Adolescence: The Mediating Role of Emotional Intelligence

Authors: Ines Vieira, Luisa Faria

Abstract:

Globally, half of all mental disorders begin by age 14 and the current gap of poorly addressed adolescent mental health has future consequences in adulthood. Schoolwork pressure to achieve good performance in secondary education might lead to lower levels of life satisfaction in youth and individual emotional competencies are crucial in this life stage. The present study aimed to determine how mindfulness relates to school achievements and well-being in adolescence and whether such a relationship might be mediated by emotional intelligence. We also studied the moderation interaction effects of gender and the involvement in non-curricular activities. A sample of 597 Portuguese adolescents aged 15 to 17 years old (N=597; 292 girls; 298 boys), enrolled in secondary education completed self-report measures of mindfulness (CAMM), emotional intelligence (TEIQue-ASF) and well-being (SWLS) in their Portuguese versions. Using SPSS and AMOS, the results were obtained through path analyses and multiple linear regression. A Confirmatory Factor Analysis was also conducted. The correlation coefficients reported a positive and statistically significant relationship between mindfulness, emotional intelligence and well-being. Regression analysis indicated that mindfulness reduced its influence on well-being and on school results when emotional intelligence was added to the model. Overall, our results provided further evidence supporting the development of robust hypotheses by perceiving the relevance of mindfulness and individual emotional competencies to school achievements and well-being in a way of improving adolescents’ health, wellness, and school success.

Keywords: mindfulness, emotional intelligence, well-being, adolescence, school

Procedia PDF Downloads 78
28814 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists

Authors: Sakul Jariyachansit

Abstract:

The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.

Keywords: factor, decision making, ASEAN tourists, tourism in Thailand

Procedia PDF Downloads 206
28813 Work Ability Index (WAI) and Its Health-Related Detriments among Iranian Farmers Working in the Small Farm Enterprises

Authors: Akbar Rostamabadi, Adel Mazloumi, Abbas Rahimi Foroushani

Abstract:

This study aimed to determine the Work Ability Index (WAI) and examine the influence of health dimensions and demographic variables on the work ability of Iranian farmers working in small farm enterprises. A cross-sectional study was conducted among 294 male farmers. The WAI and SF-36 questionnaires were used to determine work ability and health status. The effect of demographics variables on the work ability index was investigated with the independent samples t-test and one-way ANOVA. Also, multiple linear regression analysis was used to test the association between the mean WAI score and the SF-36 scales. The mean WAI score was 35.1 (SD=10.6). One-way ANOVA revealed a significant relationship between the mean WAI and age. Multiple linear regression analysis showed that work ability was more influenced by physical scales of the health dimensions, such as physical function, role-physical, and general health, whereas a lower association was found for mental scales such as mental health. The average WAI was at a moderate work ability level for the sample population of farmers in this study. Based on the WAI guidelines, improvement of work ability and identification of factors affecting it should be considered a priority in interventional programs. Given the influence of health dimensions on WAI, any intervention program for preservation and promotion work ability among the studied farmers should be based on balancing and optimizing the physical and psychosocial work environments, with a special focus on reducing physical work load.

Keywords: farmers, SF-36, Work Ability Index (WAI), Iran

Procedia PDF Downloads 441
28812 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser

Abstract:

Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 445
28811 The Relationship between Depression, HIV Stigma and Adherence to Antiretroviral Therapy among Adult Patients Living with HIV at a Tertiary Hospital in Durban, South Africa: The Mediating Roles of Self-Efficacy and Social Support

Authors: Muziwandile Luthuli

Abstract:

Although numerous factors predicting adherence to antiretroviral therapy (ART) among people living with HIV/AIDS (PLWHA) have been broadly studied on both regional and global level, up-to-date adherence of patients to ART remains an overarching, dynamic and multifaceted problem that needs to be investigated over time and across various contexts. There is a rarity of empirical data in the literature on interactive mechanisms by which psychosocial factors influence adherence to ART among PLWHA within the South African context. Therefore, this study was designed to investigate the relationship between depression, HIV stigma, and adherence to ART among adult patients living with HIV at a tertiary hospital in Durban, South Africa, and the mediating roles of self-efficacy and social support. The health locus of control theory and the social support theory were the underlying theoretical frameworks for this study. Using a cross-sectional research design, a total of 201 male and female adult patients aged between 18-75 years receiving ART at a tertiary hospital in Durban, KwaZulu-Natal were sampled, using time location sampling (TLS). A self-administered questionnaire was employed to collect the data in this study. Data were analysed through SPSS version 27. Several statistical analyses were conducted in this study, namely univariate statistical analysis, correlational analysis, Pearson’s chi-square analysis, cross-tabulation analysis, binary logistic regression analysis, and mediational analysis. Univariate analysis indicated that the sample mean age was 39.28 years (SD=12.115), while most participants were females 71.0% (n=142), never married 74.2% (n=147), and most were also secondary school educated 48.3% (n=97), as well as unemployed 65.7% (n=132). The prevalence rate of participants who had high adherence to ART was 53.7% (n=108), and 46.3% (n=93) of participants had low adherence to ART. Chi-square analysis revealed that employment status was the only statistically significant socio-demographic influence of adherence to ART in this study (χ2 (3) = 8.745; p < .033). Chi-square analysis showed that there was a statistically significant difference found between depression and adherence to ART (χ2 (4) = 16.140; p < .003), while between HIV stigma and adherence to ART, no statistically significant difference was found (χ2 (1) = .323; p >.570). Binary logistic regression indicated that depression was statistically associated with adherence to ART (OR= .853; 95% CI, .789–.922, P < 001), while the association between self-efficacy and adherence to ART was statistically significant (OR= 1.04; 95% CI, 1.001– 1.078, P < .045) after controlling for the effect of depression. However, the findings showed that the effect of depression on adherence to ART was not significantly mediated by self-efficacy (Sobel test for indirect effect, Z= 1.01, P > 0.31). Binary logistic regression showed that the effect of HIV stigma on adherence to ART was not statistically significant (OR= .980; 95% CI, .937– 1.025, P > .374), but the effect of social support on adherence to ART was statistically significant, only after the effect of HIV stigma was controlled for (OR= 1.017; 95% CI, 1.000– 1.035, P < .046). This study promotes behavioral and social change effected through evidence-based interventions by emphasizing the need for additional research that investigates the interactive mechanisms by which psychosocial factors influence adherence to ART. Depression is a significant predictor of adherence to ART. Thus, to alleviate the psychosocial impact of depression on adherence to ART, effective interventions must be devised, along with special consideration of self-efficacy and social support. Therefore, this study is helpful in informing and effecting change in health policy and healthcare services through its findings

Keywords: ART adherence, depression, HIV/AIDS, PLWHA

Procedia PDF Downloads 180
28810 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes

Authors: Haoming Ma, Guo Yu, Peiru Zhou

Abstract:

Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.

Keywords: diabetes, glycemic variability, predictors, severe disease

Procedia PDF Downloads 189
28809 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression

Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele

Abstract:

Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.

Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering

Procedia PDF Downloads 36
28808 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 155
28807 Business Constraints and Growth Potential of Smes: Case Study of Electrical Industry in Pakistan

Authors: Muhammad Waseem Akram

Abstract:

The current study attempts to analyze the impact of business constraints on the growth potential and performance of Small and Medium Enterprises (SMEs) in the electrical industry of Pakistan. Primary data have been utilized for the study collected from the electrical industry cluster in Sargodha, Pakistan. OLS regression is used to assess the impact of business constraints on the performance of SMEs by controlling the effect of Technology Level, Innovations, and Firm Size. To associate business constraints with the growth potential of SMEs, the study utilized Tetrachoric Correlation and Logistic Regression. Findings reveal that all the business constraints negatively affect the performance of SMEs in the electrical industry except Political Instability. Results of Tetrachoric Correlation show that all the business constraints are negatively correlated with the growth potential of SMEs. Logistic Regression results show that Energy Constraint, Inflation and Price Instability, and Bad Business Practices, all three business constraints cause to reduce the probability of income growth in sample SMEs.

Keywords: SMEs, business constraints, performance, growth potential

Procedia PDF Downloads 169
28806 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java

Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi

Abstract:

East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.

Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate

Procedia PDF Downloads 321
28805 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification

Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg

Abstract:

The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.

Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort

Procedia PDF Downloads 192
28804 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 300
28803 Application of Logistics Regression Model to Ascertain the Determinants of Food Security among Households in Maiduguri, Metropolis, Borno State, Nigeria

Authors: Abdullahi Yahaya Musa, Harun Rann Bakari

Abstract:

The study examined the determinants of food security among households in Maiduguri, Metropolis, Borno State, Nigeria. The objectives of the study are to: examine the determinants of food security among households; identify the coping strategies employed by food-insecure households in Maiduguri, Metropolis, Borno State, Nigeria. The population of the study is 843,964 respondents out of which 400 respondents were sampled. The study used a self-developed questionnaire to collect data from four hundred (400) respondents. Four hundred (400) copies of questionnaires were administered and all were retrieved, making 100% return rate. The study employed descriptive and inferential statistics for data analysis. Descriptive statistics (frequency counts and percentages) was used to analyze the socio-economic characteristics of the respondents and objective four, while inferential statistics (logit regression analysis) was used to analyze one. Four hundred (400) copies of questionnaires were administered and all the four hundred (400) were retrieved, making a 100% return rate. The results were presented in tables and discussed according to the research objectives. The study revealed that HHA, HHE, HHSZ, HHSX, HHAS, HHI, HHFS, HHFE, HHAC and HHCDR were the determinants of food security in Maiduguri Metropolis. Relying on less preferred foods, purchasing food on credit, limiting food intake to ensure children get enough, borrowing money to buy foodstuffs, relying on help from relatives or friends outside the household, adult family members skipping or reducing a meal because of insufficient finances and ration money to household members to buy street food were the coping strategies employed by food-insecure households in Maiduguri metropolis. The study recommended that Nigeria Government should intensify the fight against the Boko haram insurgency. This will put an end to Boko Haram Insurgency and enable farmers to return to farming in Borno state.

Keywords: internally displaced persons, food security, coping strategies, descriptive statistics, logistics regression model, odd ratio

Procedia PDF Downloads 147
28802 Determinants of Travel to Western Countries by Kuwaiti Nationals

Authors: Yvette Reisinger

Abstract:

Relatively little is known about the Arab travel market, especially the outbound travel market from Arab countries in the Middle East. The Kuwaiti travel market is the smallest yet fastest growing in the Gulf Cooperation Council (GCC) region. The Kuwaiti travel market represents a great potential for the international tourism industry. Kuwaiti nationals have a very high spending power due to the Kuwaiti dinar being the highest-valued currency unit in the world. Although Europe, North America, and Asia/Pacific try to attract the Arab tourist market the number of Kuwaiti travellers attracted to these destinations is very low. The success in attracting the Kuwaiti travel market to Western countries must be guided by an analysis of the factors that affect its travel decisions. The objective of the study is to identify major factors that influence Kuwaiti nationals’ intentions to travel to Western countries. A model is developed and empirically tested on a sample of 343 Kuwaiti nationals. A series of regression analyses are run to determine the effects of different factors on Kuwaiti’s travel decisions. A Herman’s single factor test and Durbin-Watson test are used to assess the validity of the regression model. Analysis is controlled for socio-demographics. The results show that the Muslim friendly amenities and destination cognitive image exert significant effects on Kuwaiti nationals’ intentions to travel to Western countries. The study provides a better understanding of the factors that attract Kuwaiti tourists to Western countries. By knowing what encourages Kuwaitis to travel to Western countries marketers can plan and promote these countries accordingly. The study provides a foundation of future empirical research into the Kuwaiti/Arab travel market.

Keywords: Kuwaiti travel market, travel decisions, Western countries

Procedia PDF Downloads 192
28801 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 27
28800 Effect of Drying on the Concrete Structures

Authors: A. Brahma

Abstract:

The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.

Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling

Procedia PDF Downloads 368
28799 History of Textiles and Fashion: Gender Symbolism in the Context of Colour

Authors: Damayanthie Eluwawalage

Abstract:

Historically, the color-coded attire demarcated differences, for example, differences in social position and differences in gender, etc. Distinctive colors are worn by different classes in medieval England. By the twentieth-century Western society, certain colors were firmly associated with the specific gender; as pink for girls, and blue for boys. The color-coded gender phenomenon was a novelty at the turn of the twentieth-century and became widely practiced after World War II. Prior to that era, there were no distinctions or differences in the dress of younger children, in relation to their gender. In the nineteenth century, pink suits were highly acceptable for gentlemen’s attire. Frenchmen in the eighteenth-century wore colors with an infinite range of hues like pink, plum, white, cream, blue, yellow, puce and sea green. Nineteenth-century European male austerity, primarily caused by the usage of sombre colors such as black, white and grey, has been described as an element for dignity, control and morality. In the nineteenth century, there were many color-associated distinctions, as certain colors were reserved for the unmarried, the single or the aged. Two luminous colors in one dress was ‘vulgar’ and yellow was generally regarded as unladylike. Yellow was the color utilised for most correctional attire. Orange was prohibited for the unmarried. Fashionable dressing in the nineteenth century was more gender-differentiated than in previous centuries. Masculine austerity, emphasized a shift in class relations. As a result of that shift, male attire became more uniform, homogeneous and integrated (amongst the classes), than its traditional hierarchal approach.

Keywords: textiles, fashion, gender symbolism, color

Procedia PDF Downloads 492
28798 Analyzing the Factors That Influence Students' Professional Identity Using Hierarchical Regression Analysis to Ease Higher Education Transition

Authors: Alba Barbara-i-Molinero, Rosalia Cascon Pereira, Ana Beatriz Hernandez Lara

Abstract:

Our general motivation in undertaking this study is to propose alternative measures to lighten students experienced tensions during the transitions from high school to higher education based on the concept of professional identity strength. In order to do so, we measured the influence that three different factors external motivational conditionals, educational experience conditionals and personal motivation conditionals exerted over students’ professional identity strength and proposed the measures considering the obtained results. By using hierarchical regression analysis we addressed this issue, across disciplines and bachelor degrees, allowing us to gain also deeper insight into first-year university students PID. Our findings suggest that students’ from the different disciplines are influenced by personal motivational conditionals; while students from sciences are also influenced by external motivational conditionals. Based on the obtained results we propose three different alternative educational and recruitment strategies which aim to increase students’ professional identity strength and reduce the tensions generated during high school-university transitions. From this study theoretical contributions regarding the differences in the influence of these factors on students from different bachelor degrees arise; and practical implications for universities, derived from the proposed strategies.

Keywords: professional identity, transitions, higher education, strategies

Procedia PDF Downloads 181
28797 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
28796 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.

Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety

Procedia PDF Downloads 241
28795 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: alkali activation, slag, rapid chloride permeability, water absorption capacity

Procedia PDF Downloads 312
28794 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 273
28793 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 83
28792 Appraisal of Shipping Trade Influence on Economic Growth in Nigeria

Authors: Ikpechukwu Njoku

Abstract:

The study examined appraisal of shipping trade influence on the economic growth in Nigeria from 1981-2016 by the use of secondary data collected from the Central Bank of Nigeria. The main objectives are to examine the trend of shipping trade in Nigeria as well as determine the influence of economic growth on gross domestic product (GDP). The study employed both descriptive and influential tools. The study adopted cointegration regression method for the analysis of each of the variables (shipping trade, external reserves and external debts). The results show that there is a statistically significant relationship between GDP and external reserves with p-value 0.0190. Also the result revealed that there is a statistically significant relationship between GDP and shipping trade with p-value 0.000. However, shipping trade and external reserves contributed positively at 1% and 5% level of significance respectively while external debts impacted negatively to GDP at 5% level of significance with a long run variance of cointegration regression. Therefore, the study suggests that government should do all it can to curtail foreign dominance and repatriation of profit for a more sustainable economy as well as upgrade port facilities, prevent unnecessary delays and encourage exportable goods for maximum deployment of ships.

Keywords: external debts, external reserve, GDP, shipping trade

Procedia PDF Downloads 151