Search results for: hidden geothermal
195 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 276194 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance
Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.
Abstract:
The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, PhilippinesKeywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure
Procedia PDF Downloads 105193 Multimodal Sentiment Analysis With Web Based Application
Authors: Shreyansh Singh, Afroz Ahmed
Abstract:
Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.Keywords: sentiment analysis, RNN, LSTM, word embeddings
Procedia PDF Downloads 124192 The Political Haunting of “Martyrdom” in the Palestinian Context
Authors: Mai Awad
Abstract:
This paper aims to focus on the phenomenon of martyrdom—particularly its performative aspect—and how social and popular cultural representations address the multiple meanings of the loaded image of a Palestinian martyr. This focus will help us to explore the possible reasons that might push Palestinians to consider pursuing “martyrdom” or suicide operations. Tracing what happened in the past and what is currently happening (that is, haunting) will aid in theorizing how the act/practice of “martyrdom” is produced. It is believed that there are social and political forces, particularly in a colonial society like Palestine, that influence the subject and its experience. But what is unique about this paper is its attempt to disclose the invisible, hidden narratives and complexities of Palestinian life that we do not see. By giving “martyrs” a chance to speak and express their own narratives—since “martyrs” usually leave written letters for their families, which are published after their death—this study must broaden the whole picture and discuss what is missing. The analytic method to be used: For the methodology, the paper recruits discourse analysis as a method for tracing the emergence, circulation, and productivity of the martyrdom discourse across a range of social practices in Palestinians’ everyday life after the Nakba. The paper analyzes the letters that “martyrs” left to their families, relatives, and the Palestinian community after their death. By letting “martyrs” speak for themselves and hearing their unique discourses, the research would suggest that more explanation is needed to describe the “martyr” identity. Hence, it is not possible to study the “martyr” identity in Palestine without understanding the colonial context that governs it and shapes their subjective experience.Keywords: martyrdom, palestine, haunting, nakba 1948
Procedia PDF Downloads 71191 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray
Authors: Ophir Nave
Abstract:
In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems
Procedia PDF Downloads 222190 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms
Authors: Vertika Goswami, Gargi Sharma
Abstract:
The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis
Procedia PDF Downloads 24189 Dental Ethics versus Malpractice, as Phenomenon with a Growing Trend
Authors: Saimir Heta, Kers Kapaj, Rialda Xhizdari, Ilma Robo
Abstract:
Dealing with emerging cases of dental malpractice with justifications that stem from the clear rules of dental ethics is a phenomenon with an increasing trend in today's dental practice. Dentists should clearly understand how far the limit of malpractice goes, with or without minimal or major consequences, for the affected patient, which can be justified as a complication of dental treatment, in support of the rules of dental ethics in the dental office. Indeed, malpractice can occur in cases of lack of professionalism, but it can also come as a consequence of anatomical and physiological limitations in the implementation of the dental protocols, predetermined and indicated by the patient in the paragraph of the treatment plan in his personal card. This study is of the review type with the aim of the latest findings published in the literature about the problem of dealing with these phenomena. The combination of keywords is done in such a way with the aim to give the necessary space for collecting the right information in the networks of publications about this field, always first from the point of view of the dentist and not from that of the lawyer or jurist. From the findings included in this article, it was noticed the diversity of approaches towards the phenomenon depends on the different countries based on the legal basis that these countries have. There is a lack of or a small number of articles that touch on this topic, and these articles are presented with a limited number of data on the same topic. Conclusions: Dental malpractice should not be hidden under the guise of various dental complications that we justify with the strict rules of ethics for patients treated in the dental chair. The individual experience of dental malpractice must be published with the aim of serving as a source of experience for future generations of dentists.Keywords: dental ethics, malpractice, professional protocol, random deviation
Procedia PDF Downloads 100188 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 120187 Spatial Integration at the Room-Level of 'Sequina' Slum Area in Alexandria, Egypt
Authors: Ali Essam El Shazly
Abstract:
The slum survey of 'Sequina' area in Alexandria details the building rooms of twenty-building samples according to the integral measure of space syntax. The essence of room organization sets the most integrative 'visitor' domain between the 'inhabitant' wings of less integrated 'parent' than the 'children' structure with visual ring of 'balcony' space. Despite the collective real relative asymmetry of 'pheno-type' aggregation, the relative asymmetry of individual layouts reveals 'geno-type' structure of spatial diversity. The multifunction of rooms optimizes the integral structure of graph and visibility merge, which contrasts with the deep tailing structure of distinctive social domains. The most integrative layout inverts the geno-type into freed rooms of shallow 'inhabitant' domain against the off-centered 'visitor' space, while the most segregated layout further restricts the pheno-type through isolated 'visitor' from 'inhabitant' domains across the 'staircase' public domain. The catalyst 'kitchen & living' spaces demonstrate multi-structural dimensions among the various social domains. The former ranges from most exposed central integrity to the most hidden 'motherhood' territories. The latter, however, mostly integrates at centrality or at the further ringy 'childern' domain. The study concludes social structure of spatial integrity for redevelopment, which is determined through the micro-level survey of rooms with integral dimensions.Keywords: Alexandria, Sequina slum, spatial integration, space syntax
Procedia PDF Downloads 442186 Spatial Temporal Change of COVID-19 Vaccination Condition in the US: An Exploration Based on Space Time Cube
Authors: Yue Hao
Abstract:
COVID-19 vaccines not only protect individuals but society as a whole. In this case, having an understanding of the change and trend of vaccination conditions may shed some light on revising and making up-to-date policies regarding large-scale public health promotions and calls in order to lead and encourage the adoption of COVID-19 vaccines. However, vaccination status change over time and vary from place to place hidden patterns that were not fully explored in previous research. In our research, we took advantage of the spatial-temporal analytical methods in the domain of geographic information science and captured the spatial-temporal changes regarding COVID-19 vaccination status in the United States during 2020 and 2021. After conducting the emerging hot spots analysis on both the state level data of the US and county level data of California we found that: (1) at the macroscopic level, there is a continuously increasing trend of the vaccination rate in the US, but there is a variance on the spatial clusters at county level; (2) spatial hotspots and clusters with high vaccination amount over time were clustered around the west and east coast in regions like California and New York City where are densely populated with considerable economy conditions; (3) in terms of the growing trend of the daily vaccination among, Los Angeles County alone has very high statistics and dramatic increases over time. We hope that our findings can be valuable guidance for supporting future decision-making regarding vaccination policies as well as directing new research on relevant topics.Keywords: COVID-19 vaccine, GIS, space time cube, spatial-temporal analysis
Procedia PDF Downloads 83185 Two Fold Dimensional Analysis of Post-Employment Dissonance in Employer Branding Framework of it SMES
Authors: J. Janani, S. Gomathi
Abstract:
Despite the new economy is embodied with the ample size of talent pool, the corporate world is facing the hardship in the mismatch of talent demand supply. Therefore to combat with this fallout crisis, here depicts the relevance of Employer Branding. Employer branding is gaining its popularity in Large sized companies especially IT companies but less employer branding awareness among IT SMEs (Small and Medium size Enterprises). There are N range of analysis has been dole out on employer branding from different perspectives and in different industries. The hidden factor behind the employer branding namely the post employment dissonance was not given a lot of importance into the research picture. The present study examines the employer branding as the employer image and the organizational identity. It focuses on the two fold dimensional branding initiatives namely job offer attributes and organizational attractiveness. The study will depict the dissonance level and their variations among the foresaid initiatives from the former employees and the post-employment dissonance from the present employees in IT SMEs and it will also examine the employer perception from the prospective employees towards the stated branding initiatives. The demographic factors such as generational factors (gen X and gen Y) and the career stages are majorly focused in the study. The study will promote the IT SMEs to strengthen their employer branding effectively and efficiently through implementing varied strategies and this will help them to enhance the talent pool at their best. This will eventually result in talent attraction and talent retention.Keywords: employer image, organizational identity, post-employment dissonance, job offer attributes, organizational attractiveness, talent pool, career stages, generational factors, information technology, SMEs
Procedia PDF Downloads 499184 The Construction of the Bridge between Mrs Dalloway and to the Lighthouse: The Combination of Codes and Metaphors in the Structuring of the Plot in the Work of Virginia Woolf
Authors: María Rosa Mucci
Abstract:
Tzvetan Todorov (1971) designs a model of narrative transformation where the plot is constituted by difference and resemblance. This binary opposition is a synthesis of a central figure within narrative discourse: metaphor. Narrative operates as a metaphor since it combines different actions through similarities within a common plot. However, it sounds paradoxical that metonymy and not metaphor should be the key figure within the narrative. It is a metonymy that keeps the movement of actions within the story through syntagmatic relations. By the same token, this articulation of verbs makes it possible for the reader to engage in a dynamic interaction with the text, responding to the plot and mediating meanings with the contradictory external world. As Roland Barthes (1957) points out, there are two codes that are irreversible within the process: the codes of actions and the codes of enigmas. Virginia Woolf constructs her plots through a process of symbolism; a scene is always enduring, not only because it stands for something else but also because it connotes it. The reader is forced to elaborate the meaning at a mythological level beyond the lines. In this research, we follow a qualitative content analysis to code language through the proairetic (actions) and hermeneutic (enigmas) codes in terms of Barthes. There are two novels in particular that engage the reader in this process of construction: Mrs Dalloway (1925) and To the Lighthouse (1927). The bridge from the first to the second brings memories of childhood, allowing for the discovery of these enigmas hidden between the lines. What survives? Who survives? It is the reader's task to unravel these codes and rethink this dialogue between plot and reader to contribute to the predominance of texts and the textuality of narratives.Keywords: metonymy, code, metaphor, myth, textuality
Procedia PDF Downloads 64183 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 297182 Minimizing thought Communication Gap between Designer and Client Using the Projective Personality Tests
Authors: Hira, Nisar Bhatti, Ezza
Abstract:
Contemporary studies support the strong co-relation between psychology and design. This study elaborates how different psychological personality test can help a fashion designer to judge the needs of their clients with respect to the customized clothing. This study will also help the designer to improve the lacking in the personality and will enable him to put his effort in required areas for grooming the customer. The use of psychology test to support the choice of certain design strategies that how the right clothing can make client a better intellectual with enhanced self-esteem and confidence. Different projective personality test are being used to suggest to evaluate personality traits. The Rorschach Inkblot Test is projective mental comprising of 10 ink-blots synonymous with the clinical brain research. Lüsher Color Diagnostics measures a person’s psycho physical state, his or her ability to withstand stress to perform and communicate. HTP is a projective responsibility test measuring self-perception, attitudes. The TAT test intend to evaluate a person’s patterns of thoughts, attitudes, observation, capacity and emotional response to this ambiguous test materials. No doubt designers are already crucially redesigning the individuals by their attires, but to expose the behavioral mechanism of the customer, designers should be able to recognize the hidden complexity behind his client by using the above mentioned methods. The study positively finds the design and psychology need to become substantially contacted in order to create a new regime of norms to groom a personality under the concentration and services of a fashion designer in terms of clothing.Keywords: projective personality tests, customized clothing, Rorschach Inkblot Test, TAT, HTP, Lüsher Color Diagnostics
Procedia PDF Downloads 556181 Yawning Computing Using Bayesian Networks
Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube
Abstract:
Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms
Procedia PDF Downloads 457180 Integrated Geotechnical and Geophysical Investigation of a Proposed Construction Site at Mowe, Southwestern Nigeria
Authors: Kayode Festus Oyedele, Sunday Oladele, Adaora Chibundu Nduka
Abstract:
The subsurface of a proposed site for building development in Mowe, Nigeria, using Standard Penetration Test (SPT) and Cone Penetrometer Test (CPT) supplemented with Horizontal Electrical Profiling (HEP) was investigated with the aim of evaluating the suitability of the strata for foundation materials. Four SPT and CPT were implemented using 10 tonnes hammer. HEP utilizing Wenner array were performed with inter-electrode spacing of 10 – 60 m along four traverses coincident with each of the SPT and CPT. The HEP data were processed using DIPRO software and textural filtering of the resulting resistivity sections was implemented to enable delineation of hidden layers. Sandy lateritic clay, silty lateritic clay, clay, clayey sand and sand horizons were delineated. The SPT “N” value defined very soft to soft sandy lateritic (<4), stiff silty lateritic clay (7 – 12), very stiff silty clay (12 - 15), clayey sand (15- 20) and sand (27 – 37). Sandy lateritic clay (5-40 kg/cm2) and silty lateritic clay (25 - 65 kg/cm2) were defined from the CPT response. Sandy lateritic clay (220-750 Ωm), clay (< 50 Ωm) and sand (415-5359 Ωm) were delineated from the resistivity sections with two thin layers of silty lateritic clay and clayey sand defined in the texturally filtered resistivity sections. This study concluded that the presence of incompetent thick clayey materials (18 m) beneath the study area makes it unsuitable for shallow foundation. Deep foundation involving piling through the clayey layers to the competent sand at 20 m depth was recommended.Keywords: cone penetrometer, foundation, lithologic texture, resistivity section, standard penetration test
Procedia PDF Downloads 267179 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 81178 Lost Maritime Culture in the Netherlands: Linking Material and Immaterial Datasets for a Modern Day Perception of the Late Medieval Maritime Cultural Landscape of the Zuiderzee Region
Authors: Y. T. van Popta
Abstract:
This paper focuses on the never thoroughly examined yet in native relevant late medieval maritime cultural landscape of the former Zuiderzee (A.D. 1170-1932) in the center part of the Netherlands. Especially the northeastern part of the region, nowadays known as the Noordoostpolder, testifies of the dynamic battle of the Dutch against the water. This highly dynamic maritime region developed from a lake district into a sea and eventually into a polder. By linking physical and cognitive datasets from the Noordoostpol-der region in a spatial environment, new information on a late medieval maritime culture is brought to light, giving the opportunity to: (i) create a modern day perception on the late medieval maritime cultural landscape of the region and (ii) to underline the value of interdisciplinary and spatial research in maritime archaeology in general. Since the large scale reclamations of the region (A.D. 1932-1968), many remains have been discovered of a drowned and eroded late medieval maritime culture, represented by lost islands, drowned settlements, cultivated lands, shipwrecks and socio-economic networks. Recent archaeological research has proved the existence of this late medieval maritime culture by the discovery of the remains of the drowned settlement Fenehuysen (Veenhuizen) and its surroundings. The fact that this settlement and its cultivated surroundings remained hidden for so long proves that a large part of the maritime cultural landscape is ‘invisible’ and can only be found by extensive interdisciplinary research.Keywords: drowned settlements, late middle ages, lost islands, maritime cultural landscape, the Netherlands
Procedia PDF Downloads 217177 Re-Envisioning Modernity: Transformations of Postwar Suburban Landscapes
Authors: Shannon Clayton
Abstract:
In an effort to explore the potential transformation of North American postwar suburbs, this M.Arch thesis actively engages in the ongoing critique of modernism from the mid 20th century to the present. Contemporary urban design practice has emerged out of the reaction to orthodox modernism. Typically, new suburban development falls into one of two strategies; an attempt to replicate pre-war fabric that never existed, or a reliance on high-density to create instant urbanism. In both cases, the critical role of architecture has been grossly undervalued. Ironically, it is the denial of suburbia’s inherent modernity that has served to prevent genuine place-making. As history demonstrates, modernism is not antithetical to architecture and place. In the postwar years, a critical discussion emerged amongst architects, which sought to evolve modernism beyond functionalism. This was demonstrated through critical discussions on image, experience, and monumentality. As well as increased interest in civic space, and investigations into mat urbanism and the megastructure. The undercurrent within these explorations was a belief that the scale and complexity of modern development could become an opportunity to create urbanism, rather than squander it. This critical discourse has continued through architectural work in the Netherlands and Denmark since the early 1990s, where an emphasis on visual variety, human scale, and public interaction has been given high priority. This thesis applies principles from this ongoing dialogue, and identifies hidden potential within existing North American suburban networks. As a result, the project re-evaluates the legacy of the master plan from a contemporary perspective.Keywords: urbanism, modernism, suburbia, place-making
Procedia PDF Downloads 257176 Radio-Frequency Technologies for Sensing and Imaging
Authors: Cam Nguyen
Abstract:
Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: RF sensors, radars, surface sensing, subsurface sensing
Procedia PDF Downloads 320175 Toxic Ingredients Contained in Our Cosmetics
Authors: El Alia Boularas, H. Bekkar, H. Larachi, H. Rezk-kallah
Abstract:
Introduction: Notwithstanding cosmetics are used in life every day, these products are not all innocuous and harmless, as they may contain ingredients responsible for allergic reactions and, possibly, for other health problems. Additionally, environmental pollution should be taken into account. Thus, it is time to investigate what is ‘hidden behind beauty’. Aims: 1.To investigate prevalence of 13 chemical ingredients in cosmetics being object of concern, which the Algerians use regularly. 2.To know the profile of questioned consumers and describe their opinion on cosmetics. Methods: The survey was carried out in year 2013 over a period of 3 months, among Algerian Internet users having an e-mail address or a Facebook account.The study investigated 13 chemical agents showing health and environmental problems, selected after analysis of the recent studies published on the subject, the lists of national and international regulatory references on chemical hazards, and querying the database Skin Deep presented by the Environmental Working Group. Results: 300 people distributed all over the Algerian territory participated in the survey, providing information about 731 cosmetics; 86% aged from 20 to 39 years, with a sex ratio=0,27. A percentage of 43% of the analyzed cosmetics contained at least one of the 13 toxic ingredients. The targeted ingredient that has been most frequently reported was ‘perfume’ followed by parabens and PEG.85% of the participants declared that cosmetics ‘can contain toxic substances’, 27% asserted that they verify regularly the list of ingredients when they buy cosmetics, 61% said that they try to avoid the toxic ingredients, among whom 24 % were more vigilant on the presence of parabens, 95% were in favour of the strengthening of the Algerian laws on cosmetics. Conclusion: The results of the survey provide the indication of a widespread presence of toxic chemical ingredients in personal care products that Algerians use daily.Keywords: Algerians consumers, cosmetics, survey, toxic ingredients
Procedia PDF Downloads 277174 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service
Authors: Lai Wenfang
Abstract:
Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.Keywords: artificial intelligence, natural language processing, machine learning, visualization
Procedia PDF Downloads 180173 Design of UV Based Unicycle Robot to Disinfect Germs and Communicate With Multi-Robot System
Authors: Charles Koduru, Parth Patel, M. Hassan Tanveer
Abstract:
In this paper, the communication between a team of robots is used to sanitize an environment with germs is proposed. We introduce capabilities from a team of robots (most likely heterogeneous), a wheeled robot named ROSbot 2.0 that consists of a mounted LiDAR and Kinect sensor, and a modified prototype design of a unicycle-drive Roomba robot called the UV robot. The UV robot consists of ultrasonic sensors to avoid obstacles and is equipped with an ultraviolet light system to disinfect and kill germs, such as bacteria and viruses. In addition, the UV robot is equipped with disinfectant spray to target hidden objects that ultraviolet light is unable to reach. Using the sensors from the ROSbot 2.0, the robot will create a 3-D model of the environment which will be used to factor how the ultraviolet robot will disinfect the environment. Together this proposed system is known as the RME assistive robot device or RME system, which communicates between a navigation robot and a germ disinfecting robot operated by a user. The RME system includes a human-machine interface that allows the user to control certain features of each robot in the RME assistive robot device. This method allows the cleaning process to be done at a more rapid and efficient pace as the UV robot disinfects areas just by moving around in the environment while using the ultraviolet light system to kills germs. The RME system can be used in many applications including, public offices, stores, airports, hospitals, and schools. The RME system will be beneficial even after the COVID-19 pandemic. The Kennesaw State University will continue the research in the field of robotics, engineering, and technology and play its role to serve humanity.Keywords: multi robot system, assistive robots, COVID-19 pandemic, ultraviolent technology
Procedia PDF Downloads 190172 Drive Sharing with Multimodal Interaction: Enhancing Safety and Efficiency
Authors: Sagar Jitendra Mahendrakar
Abstract:
Exploratory testing is a dynamic and adaptable method of software quality assurance that is frequently praised for its ability to find hidden flaws and improve the overall quality of the product. Instead of using preset test cases, exploratory testing allows testers to explore the software application dynamically. This is in contrast to scripted testing methodologies, which primarily rely on tester intuition, creativity, and adaptability. There are several tools and techniques that can aid testers in the exploratory testing process which we will be discussing in this talk.Tests of this kind are able to find bugs of this kind that are harder to find during structured testing or that other testing methods may have overlooked.The purpose of this abstract is to examine the nature and importance of exploratory testing in modern software development methods. It explores the fundamental ideas of exploratory testing, highlighting the value of domain knowledge and tester experience in spotting possible problems that may escape the notice of traditional testing methodologies. Throughout the software development lifecycle, exploratory testing promotes quick feedback loops and continuous improvement by giving testers the ability to make decisions in real time based on their observations. This abstract also clarifies the unique features of exploratory testing, like its non-linearity and capacity to replicate user behavior in real-world settings. Testers can find intricate bugs, usability problems, and edge cases in software through impromptu exploration that might go undetected. Exploratory testing's flexible and iterative structure fits in well with agile and DevOps processes, allowing for a quicker time to market without sacrificing the quality of the final product.Keywords: exploratory, testing, automation, quality
Procedia PDF Downloads 56171 The Influence of Salt Body of J. Ech Cheid on the Maturity History of the Cenomanian: Turonian Source Rock
Authors: Mohamed Malek Khenissi, Mohamed Montassar Ben Slama, Anis Belhaj Mohamed, Moncef Saidi
Abstract:
Northern Tunisia is well known by its different and complex structural and geological zones that have been the result of a geodynamic history that extends from the early Mesozoic era to the actual period. One of these zones is the salt province, where the Halokinesis process is manifested by a number of NE/SW salt structures such as Jebel Ech-Cheid which represents masses of materials characterized by a high plasticity and low density. The salt masses extrusions that have been developed due to an extension that started from the late Triassic to late Cretaceous. The evolution of salt bodies within sedimentary basins have not only contributed to modify the architecture of the basin, but it also has certain geochemical effects which touch mainly source rocks that surround it. It has been demonstrated that the presence of salt structures within sedimentary basins can influence its temperature distribution and thermal history. Moreover, it has been creating heat flux anomalies that may affect the maturity of organic matter and the timing of hydrocarbon generation. Field samples of the Bahloul source rock (Cenomanan-Tunonian) were collected from different sights from all around Ech Cheid salt structure and evaluated using Rock-eval pyrolysis and GC/MS techniques in order to assess the degree of maturity evolution and the heat flux anomalies in the different zones analyze. The Total organic Carbon (TOC) values range between 1 to 9% and the (Tmax) ranges between 424 and 445°C, also the distribution of the source rock biomarkers both saturated and aromatic changes in a regular fashions with increasing maturity and this are shown in the chromatography results such as Ts/(Ts+Tm) ratios, 22S/(22S+22R) values for C31 homohopanes, ββ/(ββ+αα)20R and 20S/(20S+20R) ratios for C29 steranes which gives a consistent maturity indications and assessment of the field samples. These analyses are carried to interpret the maturity evolution and the heat flux around Ech Cheid salt structure through the geological history. These analyses also aim to demonstrate that the salt structure can have a direct effect on the geothermal gradient of the basin and on the maturity of the Bahloul Formation source rock. The organic matter has reached different stages of thermal maturity, but delineate a general increasing maturity trend. Our study confirms that the J. Ech Cheid salt body have on the first hand: a huge influence on the local distribution of anoxic depocentre at least within Cenomanian-Turonian time. In the second hand, the thermal anomaly near the salt mass has affected the maturity of Bahloul Formation.Keywords: Bahloul formation, depocentre, GC/MS, rock-eval
Procedia PDF Downloads 244170 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 282169 Tracing Digital Traces of Phatic Communion in #Mooc
Authors: Judith Enriquez-Gibson
Abstract:
This paper meddles with the notion of phatic communion introduced 90 years ago by Malinowski, who was a Polish-born British anthropologist. It explores the phatic in Twitter within the contents of tweets related to moocs (massive online open courses) as a topic or trend. It is not about moocs though. It is about practices that could easily be hidden or neglected if we let big or massive topics take the lead or if we simply follow the computational or secret codes behind Twitter itself and third party software analytics. It draws from media and cultural studies. Though at first it appears data-driven as I submitted data collection and analytics into the hands of a third party software, Twitonomy, the aim is to follow how phatic communion might be practised in a social media site, such as Twitter. Lurking becomes its research method to analyse mooc-related tweets. A total of 3,000 tweets were collected on 11 October 2013 (UK timezone). The emphasis of lurking is to engage with Twitter as a system of connectivity. One interesting finding is that a click is in fact a phatic practice. A click breaks the silence. A click in one of the mooc website is actually a tweet. A tweet was posted on behalf of a user who simply chose to click without formulating the text and perhaps without knowing that it contains #mooc. Surely, this mechanism is not about reciprocity. To break the silence, users did not use words. They just clicked the ‘tweet button’ on a mooc website. A click performs and maintains connectivity – and Twitter as the medium in attendance in our everyday, available when needed to be of service. In conclusion, the phatic culture of breaking silence in Twitter does not have to submit to the power of code and analytics. It is a matter of human code.Keywords: click, Twitter, phatic communion, social media data, mooc
Procedia PDF Downloads 415168 Fight against Money Laundering with Optical Character Recognition
Authors: Saikiran Subbagari, Avinash Malladhi
Abstract:
Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition
Procedia PDF Downloads 146167 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System
Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli
Abstract:
Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 134166 The Cultural Persona of Artificial Intelligence: An Analysis of Anthropological Challenges to Public Communication
Authors: Abhivardhan, Ritu Agarwal
Abstract:
The role of entrepreneurial ethics is connected with materializing the core components of human life, and the flexible and gullible attributions dominate the materialization of human lifestyle and outreach in the age of the internet and globalization. One of the key bi-products of the age of information – Artificial Intelligence has become a relevant mechanism to materialize and understand human empathy and originality via various algorithmic policing methodologies with specific intricacies. Since it has a special connection with ethnocentrism – it has the potential to influence the approach of international law and politics owed to the rise of and approach towards perception and communication via populism in progressive and third world countries. The paper argues about the cultural persona of artificial intelligence, and its ontological resemblance in human life is connected with the ethnocentric treatment of cyberspace, with an analysis of the influence of the ethics of entrepreneurship in international politics. The paper further provides an analysis of fake news and misinformation as the sub-strata of communication strategies involving populism determined as a communication strategy and about the legal case of constitutional redemption in recent legislative developments in Europe, the U.S, and Asia with reference to certain important strategies, policy documentation, declarations, and legal instruments. The paper concludes that the capillaries of the anthropomorphic developments of cultural perception via towards artificial intelligence have a hidden and unstable connection with the common approach of entrepreneurial ethics, which influences populism to disrupt the peaceful order of international politics via some minor backlashes in the technological, legal and social realm of human life. Suggestions with the conclusion are hereby provided.Keywords: ethnocentrism, perception politics, populism, international law, slacktivism, artificial intelligence ethics, enculturation
Procedia PDF Downloads 132