Search results for: data integrity
25442 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability
Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola
Abstract:
Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.Keywords: data, employee, malware, work place
Procedia PDF Downloads 38725441 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach
Authors: H. M. Ferreira, H. Cockings, D. F. Gordon
Abstract:
Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel
Procedia PDF Downloads 10825440 Tunnelling Concepts in Overstressed Weak Rocks
Authors: Entfellner Manuel, Wannenmacher Helmut, Reisenbauer Josef, Schubert Wulf
Abstract:
When tunnelling in overstressed weak rocks ("squeezing ground"), two basic design approaches are available: the resistance principle, and the yielding principle. The resistance principle relies on rigid support systems to withstand the ground pressure. Alternatively, the yielding principle prioritizes controlled deformation, allowing the ground to deform without compromising tunnel integrity. This paper highlights the beneficial factors of the yielding principle for conventionally excavated tunnels in overstressed weak rocks. Especially the application of a ductile shotcrete lining with yielding elements is analysed in detail. Construction costs, safety, short- and long-term stabilities are discussed.Keywords: squeezing ground, yielding principle, yielding element, conventional tunneling
Procedia PDF Downloads 7525439 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance
Authors: Jia Yi Yap, Angela S. H. Lee
Abstract:
With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.Keywords: big data technologies, employee, job performance, questionnaire
Procedia PDF Downloads 30425438 Data Poisoning Attacks on Federated Learning and Preventive Measures
Authors: Beulah Rani Inbanathan
Abstract:
In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.Keywords: data poisoning, federated learning, Internet of Things, edge computing
Procedia PDF Downloads 9025437 The Role of Technology in Managing Election Logistics and Preventing Fraud in Nigeria and Uganda: A Comparative Analysis
Authors: Sifiso Vilakazi, Lerato Mzenzi
Abstract:
The incorporation of technology has brought about a considerable evolution in election management, providing answers to persistent issues with fraud, inefficiency, and logistical complexity. The paper offers a comparative review of the effects of technology advancements on election logistics and fraud prevention in Uganda and Nigeria. Both nations have embraced technology such as digital fraud prevention systems, biometric voter registration, and electronic results transmission while having different political environments and electoral problems. Nevertheless, these innovations' varied results raise important concerns about how technology can enhance vote integrity. For improved transparency and lower voter fraud, the Independent National Electoral Commission (INEC) of Nigeria has deployed electronic voting machines, biometric voter identification, and the INEC Result Viewing (IReV) portal. Despite these developments, technological setbacks and logistical difficulties, particularly during the 2023 elections, uncovered weaknesses that stoked distrust and electoral conflicts by exposing flaws, including device breakdowns, insufficient cybersecurity protections, and transmission delays in results. Comparably, Uganda has used electronic result transmission technologies and biometric voter verification since 2016 to increase election efficiency and combat ballot stuffing and impersonation. Nevertheless, problems, including remote logistical challenges and internet outages during the 2021 elections, have reduced the efficacy of these tools. This paper maintains that while technology might reduce election-related stress and potentially reduce fraud, its efficacy depends on several variables, such as political will, public confidence, and infrastructure. Furthermore, it draws attention to the necessity of more robust legislative frameworks, ongoing investments in cybersecurity, and implementation plans that are customized to the particular difficulties presented by each nation's voting system locally. The results imply that although technology can help Ugandan and Nigerian election management, it cannot guarantee electoral integrity and must be used in conjunction with more extensive institutional changes. Through providing insights into how African nations might use technological advancements to improve democratic governance while addressing context-specific problems, the research adds to the expanding body of literature on the use of technology in election management.Keywords: elections, Nigeria, Uganda, Africa, management, innovation
Procedia PDF Downloads 1625436 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 8025435 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications
Authors: R. M. Kalayappan, N. Kathiravan
Abstract:
In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry
Procedia PDF Downloads 39925434 Improving the Statistics Nature in Research Information System
Authors: Rajbir Cheema
Abstract:
In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization
Procedia PDF Downloads 16225433 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research
Authors: Carla Silva
Abstract:
Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.Keywords: data mining, research analysis, investment decision-making, educational research
Procedia PDF Downloads 36225432 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data
Authors: Digvijaysingh S. Bana, Kiran R. Trivedi
Abstract:
This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data
Procedia PDF Downloads 46725431 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave
Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora
Abstract:
The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.Keywords: Enterococcus faecalis, image treatment, octave and network neuronal
Procedia PDF Downloads 23325430 Mass Media and Electoral Conflict Management in Kogi State, Nigeria
Authors: Okpanachi Linus Odiji, Chris Ogwu Attah
Abstract:
Election is no doubt widely assumed as one of the most suitable means of resolving political quagmires even though it has never been bereft of conflict which can manifest before, during, or after polls. What, however, advances democracy and promotes electoral integrity is the existence and effectiveness of institutional frameworks for electoral conflict management. Electoral conflicts are no doubt unique in the sense that they represent the struggles of people over the control of public resources. In most cases, the stakes involved are high and emotional that they do not only undermine inter-group relationship but also threaten national security. The need, therefore, for an effectively functional conflict management apparatus becomes imperative. While at the State level, there exist numerous governmental initiatives at various electoral stages aimed at managing conflicts, this paper examines the activities of the mass media, which is another prominent stakeholder in the electoral process. Even though media influence has increased tremendously in the last decade, researchers are yet to agree on its utility in the management of conflicts. Guided by the social responsibility theory of media reporting and drawing data from observed trends in Kogi state, the paper, which context analyses the 2019 gubernatorial election coverage in the state, observes both conflict escalation and de-escalation roles in the media. To mitigate conflict reporting misrepresentation, therefore, a common approach to conflict reporting should be designed and ordered by the National Broadcasting Commission as well as the Nigerian Press Council. This should be garnished with the training of journalists on conflict reporting and development of a standard conflict reporting procedure.Keywords: conflict management, electoral conflict, mass media, media reporting
Procedia PDF Downloads 15825429 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9025428 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9825427 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 44425426 Health Monitoring of Concrete Assets in Refinery
Authors: Girish M. Bhatia
Abstract:
Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes.Keywords: concrete structures, corrosion sensors, drones, health monitoring
Procedia PDF Downloads 40225425 Security Design of Root of Trust Based on RISC-V
Authors: Kang Huang, Wanting Zhou, Shiwei Yuan, Lei Li
Abstract:
Since information technology develops rapidly, the security issue has become an increasingly critical for computer system. In particular, as cloud computing and the Internet of Things (IoT) continue to gain widespread adoption, computer systems need to new security threats and attacks. The Root of Trust (RoT) is the foundation for providing basic trusted computing, which is used to verify the security and trustworthiness of other components. Design a reliable Root of Trust and guarantee its own security are essential for improving the overall security and credibility of computer systems. In this paper, we discuss the implementation of self-security technology based on the RISC-V Root of Trust at the hardware level. To effectively safeguard the security of the Root of Trust, researches on security safeguard technology on the Root of Trust have been studied. At first, a lightweight and secure boot framework is proposed as a secure mechanism. Secondly, two kinds of memory protection mechanism are built to against memory attacks. Moreover, hardware implementation of proposed method has been also investigated. A series of experiments and tests have been carried on to verify to effectiveness of the proposed method. The experimental results demonstrated that the proposed approach is effective in verifying the integrity of the Root of Trust’s own boot rom, user instructions, and data, ensuring authenticity and enabling the secure boot of the Root of Trust’s own system. Additionally, our approach provides memory protection against certain types of memory attacks, such as cache leaks and tampering, and ensures the security of root-of-trust sensitive information, including keys.Keywords: root of trust, secure boot, memory protection, hardware security
Procedia PDF Downloads 22725424 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 16525423 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: text mining, topic extraction, independent, incremental, independent component analysis
Procedia PDF Downloads 31425422 Open Data for e-Governance: Case Study of Bangladesh
Authors: Sami Kabir, Sadek Hossain Khoka
Abstract:
Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data
Procedia PDF Downloads 35725421 Foreign Policy and National Security Dilemma: Examining Nigerian Experience
Authors: Shuaibu Umar Abdul
Abstract:
The essence of any state as well as government is to ensure and advance the security of lives and property of its citizens. As a result, providing security in all spheres ranging from safeguarding the territorial integrity, security of lives and property of the citizens as well as economic emancipation have constitute the core objectives cum national interest of virtually all country’s foreign policy in the world. In view of this imperative above, Nigeria has enshrined in the early part of her 1999 constitution as amended, as its duty and responsibility as a state, to ensure security of lives and property of its citizens. Yet, it does not make any significant shift as it relates to the country’s fundamental security needs as exemplified by the current enormous security challenges that reduced the country’s fortune to the background in all ramifications. The study chooses realist paradigm as theoretical underpinning which emphasizes that exigency of the moment should always take priority in the pursuit of foreign policy. The study is historical, descriptive and narrative in method and character. Data for the study was sourced from secondary sources and analysed via content analysis. The study found out that it is lack of political will on the side of the government to guarantee a just and egalitarian society that will be of benefit to all citizens. This could be more appreciated when looking at the gaps between the theory in Nigerian foreign policy and the practice as exemplified by the action or inaction of the government to ensure security in the state. On this account, the study recommends that until the leaderships in Nigerian foreign policy recognized the need for political will and respect for constitutionalism to ensure security of its citizens and territory, otherwise achieving great Nigeria will remain an illusion.Keywords: foreign policy, nation, national security, Nigeria, security
Procedia PDF Downloads 51825420 Resource Framework Descriptors for Interestingness in Data
Authors: C. B. Abhilash, Kavi Mahesh
Abstract:
Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.Keywords: RDF, interestingness, knowledge base, semantic data
Procedia PDF Downloads 16725419 Exploring the Dark Side of IT Security: Delphi Study on Business’ Influencing Factors
Authors: Tizian Matschak, Ilja Nastjuk, Stephan Kühnel, Simon Trang
Abstract:
We argue that besides well-known primary effects of information security controls (ISCs), namely confidentiality, integrity, and availability, ISCs can also have secondary effects. For example, while IT can add business value through impacts on business processes, ISCs can be a barrier and distort the relationship between IT and organizational value through the impact on business processes. By applying the Delphi method with 28 experts, we derived 27 business process influence dimensions of ISCs. Defining and understanding these mechanisms can change the common understanding of the cost-benefit valuation of IT security investments and support managers' effective and efficient decision-making.Keywords: business process dimensions, dark side of information security, Delphi study, IT security controls
Procedia PDF Downloads 11725418 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan
Authors: Dina Ahmad Alkhodary
Abstract:
This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.Keywords: data, mining, development, business
Procedia PDF Downloads 50025417 Downhole Corrosion Inhibition Treatment for Water Supply Wells
Authors: Nayif Alrasheedi, Sultan Almutairi
Abstract:
Field-wide, a water supply wells’ downhole corrosion inhibition program is being applied to maintain downhole component integrity and keep the fluid corrosivity below 5 MPY. Batch treatment is currently used to inject the oil field chemical. This work is a case study consisting of analytical procedures used to optimize the frequency of the good corrosion inhibition treatments. During the study, a corrosion cell was fitted with a special three-electrode configuration for electrochemical measurements, electrochemical linear polarization, corrosion monitoring, and microbial analysis. This study revealed that the current practice is not able to mitigate material corrosion in the downhole system for more than three months.Keywords: downhole corrosion inhibition, electrochemical measurements, electrochemical linear polarization, corrosion monitoring
Procedia PDF Downloads 19225416 Re-Invent Corporate Governance - Ethical Way
Authors: Talha Sareshwala
Abstract:
The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.Keywords: business, entrepreneur, ethics, governance, transparency.
Procedia PDF Downloads 7825415 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain
Authors: Amal M. Alrayes
Abstract:
Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.Keywords: data quality, performance, system quality, Kingdom of Bahrain
Procedia PDF Downloads 49925414 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 6725413 Study on Residual Stress Measurement of Inconel-718 under Different Lubricating Conditions
Authors: M. Sandeep Kumar, Vasu Velagapudi, A. Venugopal
Abstract:
When machining is carried out on a workpiece, residual stresses are induced in the workpiece due to nonuniform thermal and mechanical loads. These stresses play a vital role in the surface integrity of the final product or the output. Inconel 718 is commonly used in critical structural components of aircraft engines due to its properties at high temperatures. Therefore it is important to keep down the stresses induced due to machining. This can be achieved through proper lubricating conditions. In this work, experiments were carried out to check the influence of the developed nanofluid as cutting fluids on residual stresses developed during the course of machining. The results of MQL/Nanofluids were compared with MQL/Vegetable oil and dry machining lubricating condition. Results indicate the reduction in residual stress with the use of MQL/Nanofluid.Keywords: nanofluids, MQL, residual stress, Inconel-718
Procedia PDF Downloads 265