Search results for: building performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15541

Search results for: building performance

15151 Building a Performance Outline for Health Care Workers at Teaching Hospitals, Nigeria: The Role of Different Leadership Styles

Authors: Osuagwu Justine Ugochukwu

Abstract:

Investigating the effects of transformational and transactional leadership styles on the performance of healthcare employees at the University Teaching Hospital (UNTH) in Enugu, Nigeria, was the goal of the research. The respondents were asked to fill out a structured questionnaire. The respondents were chosen using a straightforward random sampling technique and consisted of 370 health workers at the hospital. The result of the analysis revealed that transactional and transformational leadership style has a positive while ambidextrous leadership has a negative effect on healthcare workers' performance in UNTH, Enugu. Therefore, the management of public hospitals that have the capacity to change their top management approach to leadership styles will gain substantial support from their employees’ thereby increasing organizational commitment and performance among health workers. This will have remarkable social implications, one of which is a change in the work culture and attitude of medical personnel from the seemingly anti-community of patients to friendly engagement and treatment of patients leading to a harmonious coexistence among these individuals in society. Investigating ambidextrous leadership and the use of nonparametric analysis is unique and has brought brand-new knowledge to leadership literature.

Keywords: workers performance, transformational leadership, transactional leadership, governance quality, ambidextrous leadership

Procedia PDF Downloads 55
15150 Downstream Supply Chain Collaboration: The Cornerstone of the Global Supply Chain

Authors: Fatiha Naaoui-Outini

Abstract:

Purpose – The purpose of this paper is to shed light on how a Downstream Supply Chain facilitated the Customer Service Performance (BTB) by more collaborative practices between the different stakeholders in the chain. Methodology/approach – The paper developed a theoretical framework and conducted a qualitative exploratory study approach based on six semi-structured interviews with two international groups in the distribution sector with the aim of understanding and analyzing how companies have changed their supply chains to ensure optimal customer service. Findings/Implications – The study contributes to the Global Supply Chain Management and Collaboration literature by integrating the role of the downstream supply chain into research that may actually influence customer service performance on BTB. Our findings also provide firms with some guidelines on building successful downstream supply chain collaboration and a significant influence on customer service performance in BTB. Because of the exploratory nature of the study approach, the research results are limited to the data collected, and these preliminary findings require further confirmation.

Keywords: customer service performance (B2B), global supply chain, downstream supply collaboration, qualitative case study

Procedia PDF Downloads 118
15149 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation

Authors: Naseer M. A.

Abstract:

Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.

Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings

Procedia PDF Downloads 230
15148 Building Information Modelling: A Review to Indian Scenario

Authors: P. Agnivesh, P. V. Ponambala Moorthi

Abstract:

Evolution of information modelling leads to the visualisation of well-organized built environment. Building Information Modelling (BIM) is considered as evolution in the off-site construction which essentially enhances and controls the present scenario of on-site construction paradigms. Promptness, sustainability and security are considered as the important characteristics of the building information modelling. Projects that uses BIM are tied firmly by technology but distributed organizationally. This allows different team members in the project to associate and integrate the works and work flows. This will in turn improve the efficiency of work breakdown structure. Internationally BIM had been accepted as modern computer aided way of information sharing by construction industry for efficient way of manipulation in order to avoid the on-site misperceptions. Even though, in developing countries like India BIM is in the phase of start and requires lot of mandates and policies to be brought about by the government for its widespread implementations. This paper reviews the current scenario of BIM worldwide and in India and suggests for the improved implementation of building modelling for Indian policy condition.

Keywords: building information modelling, Indian polity, information modelling, information sharing, mandates and policies, sustainability.

Procedia PDF Downloads 353
15147 Subsidiary Entrepreneurial Orientation, Trust in Headquarters and Performance: The Mediating Role of Autonomy

Authors: Zhang Qingzhong

Abstract:

Though there exists an increasing number of research studies on the headquarters-subsidiary relationship, and within this context, there is a focus on subsidiaries' contributory role to multinational corporations (MNC), subsidiary autonomy, and the conditions under which autonomy exerts an effect on subsidiary performance still constitute a subject of debate in the literature. The objective of this research is to study the MNC subsidiary autonomy and performance relationship and the effect of subsidiary entrepreneurial orientation and trust on subsidiary autonomy in the China environment, a phenomenon that has not yet been studied. The research addresses the following three questions: (i) Is subsidiary autonomy associated with MNC subsidiary performance in the China environment? (ii) How do subsidiary entrepreneurship and its trust in headquarters affect the level of subsidiary autonomy and its relationship with subsidiary performance? (iii) Does subsidiary autonomy have a mediating effect on subsidiary performance with subsidiary’s entrepreneurship and trust in headquarters? In the present study, we have reviewed literature and conducted semi-structured interviews with multinational corporation (MNC) subsidiary senior executives in China. Building on our insights from the interviews and taking perspectives from four theories, namely the resource-based view (RBV), resource dependency theory, integration-responsiveness framework, and social exchange theory, as well as the extant articles on subsidiary autonomy, entrepreneurial orientation, trust, and subsidiary performance, we have developed a model and have explored the direct and mediating effects of subsidiary autonomy on subsidiary performance within the framework of the MNC. To test the model, we collected and analyzed data based on cross-industry two waves of an online survey from 102 subsidiaries of MNCs in China. We used structural equation modeling to test measurement, direct effect model, and conceptual framework with hypotheses. Our findings confirm that (a) subsidiary autonomy is positively related to subsidiary performance; (b) subsidiary entrepreneurial orientation is positively related to subsidiary autonomy; (c) subsidiary’s trust in headquarters has a positive effect on subsidiary autonomy; (d) subsidiary autonomy mediates the relationship between entrepreneurial orientation and subsidiary performance; (e) subsidiary autonomy mediates the relationship between trust and subsidiary performance. Our study highlights the important role of subsidiary autonomy in leveraging the resource of subsidiary entrepreneurial orientation and its trust relationship with headquarters to achieve high performance. We discuss the theoretical and managerial implications of the findings and propose directions for future research.

Keywords: subsidiary entrepreneurial orientation, trust, subsidiary autonomy, subsidiary performance

Procedia PDF Downloads 164
15146 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 309
15145 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment

Authors: Subodh Kumar, Amit Varde

Abstract:

Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.

Keywords: high performance computing, HPC, cloud computing, optimization, schedulers

Procedia PDF Downloads 63
15144 Floating Building Potential for Adaptation to Rising Sea Levels: Development of a Performance Based Building Design Framework

Authors: Livia Calcagni

Abstract:

Most of the largest cities in the world are located in areas that are vulnerable to coastal erosion and flooding, both linked to climate change and rising sea levels (RSL). Nevertheless, more and more people are moving to these vulnerable areas as cities keep growing. Architects, engineers and policy makers are called to rethink the way we live and to provide timely and adequate responses not only by investigating measures to improve the urban fabric, but also by developing strategies capable of planning change, exploring unusual and resilient frontiers of living, such as floating architecture. Since the beginning of the 21st century we have seen a dynamic growth of water-based architecture. At the same time, the shortage of land available for urban development also led to reclaim the seabed or to build floating structures. In light of these considerations, time is ripe to consider floating architecture not only as a full-fledged building typology but especially as a full-fledged adaptation solution for RSL. Currently, there is no global international legal framework for urban development on water and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, the research intends to identify the technological, morphological, functional, economic, managerial requirements that must be considered in a the development of the PBBD framework conceived as a meta-design tool. As it is expected that floating urban development is mostly likely to take place as extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than of the offshore industry. Therefor, the identification and categorization of parameters takes the urban-architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics, from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of performance guidelines and regulatory systems that are effective in different countries around the world addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, this paper highlights how inhabiting water is not only a viable response to the problem of RSL, thus a resilient frontier for urban development, but also a response to energy insecurity, clean water and food shortages, environmental concerns and urbanization, in line with Blue Economy principles and the Agenda 2030. Moreover, the discipline of architecture is presented as a fertile field for investigating solutions to cope with climate change and its effects on life safety and quality. Future research involves the development of a decision support system as an information tool to guide the user through the decision-making process, emphasizing the logical interaction between the different potential choices, based on the PBBD.

Keywords: adaptation measures, floating architecture, performance based building design, resilient architecture, rising sea levels

Procedia PDF Downloads 53
15143 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 193
15142 Agricultural Solid Wastes Generation in Nigeria and Their Recycling Potentials into Building Materials

Authors: Usman Aliyu Jalam, Shuaibu Alolo Sumaila, Sa’adiya Iliyasu Muhammed

Abstract:

Modern building industry lays much emphasis on sophisticated materials that have high embodied energy with intrinsic distinctiveness for damaging the environment. But today, advances in solid waste management have resulted in alternative building materials as partial or complete replacement of the conventional materials like cement, aggregate etc particularly for low cost housing. Investigations carried out revealed that an estimated 18.0 million tonnes of agricultural solid wastes are being generated in Nigeria annually. This constitutes a problem not only to the natural environment but also to the built environment more particularly with the way the wastes are being dispose of. The paper has discussed the present status on the generation and utilisation of agricultural solid wastes, their recycling potentials and environmental implications. It further discovered that although considerable quantity of these wastes were found to have the potentials of being recycled as building materials, the availability of the appropriate technology remains a big challenge in the country. Moreover, majority of the wastes type have gained popularity as fuel. As such, the economic and environmental benefits of recycling the wastes and the use of the wastes as fuel need further investigation.

Keywords: agricultural waste, building, environment, materials, Nigeria

Procedia PDF Downloads 370
15141 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 133
15140 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 229
15139 Assessment of Rehabilitation Possibilities in Case of Budapest Jewish Quarter Building Stock

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the Budapest 7th district is known as the former Jewish Quarter. The majority of the historical building stock contains multi-story tenement houses with courtyards, built around the end of the 19th century. Various rehabilitation and urban planning attempt occurred until today, mostly left unfinished. Present paper collects the past rehabilitation plans, actions and their effect which took place in the former Jewish District of Budapest. The authors aim to assess the boundaries of a complex building stock rehabilitation, by taking into account the monument protection guidelines. As a main focus of the research, structural as well as energetic rehabilitation possibilities are analyzed in case of each building by using Geographic Information System (GIS) methods.

Keywords: geographic information system, Hungary, Jewish Quarter, monument, protection, rehabilitation

Procedia PDF Downloads 243
15138 Sound Insulation between Buildings: The Impact Noise Transmission through Different Floor Configurations

Authors: Abdelouahab Bouttout, Mohamed Amara

Abstract:

The present paper examines the impact noise transmission through some floor building assemblies. The Acoubat software numerical simulation has been used to simulate the impact noise transmission through different floor configurations used in Algerian construction mode. The results are compared with the available measurements. We have developed two experimental methods, i) field method, and ii) laboratory method using Brüel and Kjær equipments. The results show that the different cases of floor configurations need some improvement to ensure the acoustic comfort in the receiving apartment. The recommended value of the impact sound level in the receiving room should not exceed 58 dB. The important results obtained in this paper can be used as platform to improve the Algerian building acoustic regulation aimed at the construction of the multi-storey residential building.

Keywords: impact noise, building acoustic, floor insulation, resilient material

Procedia PDF Downloads 346
15137 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone

Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi

Abstract:

The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.

Keywords: system identification, tuned mass damper, wall buildings, seismic protection

Procedia PDF Downloads 98
15136 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction

Authors: Bruce Wrightsman

Abstract:

Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.

Keywords: wood building systems, material histories, monocoque systems, construction waste

Procedia PDF Downloads 58
15135 Life Cycle Assessment of Mass Timber Structure, Construction Process as System Boundary

Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu

Abstract:

Today, life cycle assessment (LCA) is a leading method in mitigating the environmental impacts emerging from the building sector. In this paper, LCA is used to quantify the Green House Gas (GHG) emissions during the construction phase of the largest mass timber residential structure in the United States, Adohi Hall. This building is a 200,000 square foot 708-bed complex located on the campus of the University of Arkansas. The energy used for buildings’ operation is the most dominant source of emissions in the building industry. Lately, however, the efforts were successful at increasing the efficiency of building operation in terms of emissions. As a result, the attention is now shifted to the embodied carbon, which is more noticeable in the building life cycle. Unfortunately, most of the studies have, however, focused on the manufacturing stage, and only a few have addressed to date the construction process. Specifically, less data is available about environmental impacts associated with the construction of mass timber. This study presents, therefore, an assessment of the environmental impact of the construction processes based on the real and newly built mass timber building mentioned above. The system boundary of this study covers modules A4 and A5 based on building LCA standard EN 15978. Module A4 includes material and equipment transportation. Module A5 covers the construction and installation process. This research evolves through 2 stages: first, to quantify materials and equipment deployed in the building, and second, to determine the embodied carbon associated with running equipment for construction materials, both transported to, and installed on, the site where the edifice is built. The Global Warming Potential (GWP) of the building is the primary metric considered in this research. The outcomes of this study bring to the front a better understanding of hotspots in terms of emission during the construction process. Moreover, the comparative analysis of the mass timber construction process with that of a theoretically similar steel building will enable an effective assessment of the environmental efficiency of mass timber.

Keywords: construction process, GWP, LCA, mass timber

Procedia PDF Downloads 145
15134 An Approach to Physical Performance Analysis for Judo

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes.

Keywords: sport performance, physical performance, judo, performance coefficients

Procedia PDF Downloads 381
15133 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector

Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan

Abstract:

Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.

Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector

Procedia PDF Downloads 177
15132 Strengths and Weaknesses of Tally, an LCA Tool for Comparative Analysis

Authors: Jacob Seddlemeyer, Tahar Messadi, Hongmei Gu, Mahboobeh Hemmati

Abstract:

The main purpose of this first tier of the study is to quantify and compare the embodied environmental impacts associated with alternative materials applied to Adohi Hall, a residence building at the University of Arkansas campus, Fayetteville, AR. This 200,000square foot building has5 stories builtwith mass timber and is compared to another scenario where the same edifice is built with a steel frame. Based on the defined goal and scope of the project, the materials respectivetothe respective to the two building options are compared in terms of Global Warming Potential (GWP), starting from cradle to the construction site, which includes the material manufacturing stage (raw material extract, process, supply, transport, and manufacture) plus transportation to the site (module A1-A4, based on standard EN 15804 definition). The consumedfossil fuels and emitted CO2 associated with the buildings are the major reason for the environmental impacts of climate change. In this study, GWP is primarily assessed to the exclusion of other environmental factors. The second tier of this work is to evaluate Tally’s performance in the decision-making process through the design phases, as well as determine its strengths and weaknesses. Tally is a Life Cycle Assessment (LCA) tool capable of conducting a cradle-to-grave analysis. As opposed to other software applications, Tally is specifically targeted at buildings LCA. As a peripheral application, this software tool is directly run within the core modeling application platform called Revit. This unique functionality causes Tally to stand out from other similar tools in the building sector LCA analysis. The results of this study also provide insights for making more environmentally efficient decisions in the building environment and help in the move forward to reduce Green House Gases (GHGs) emissions and GWP mitigation.

Keywords: comparison, GWP, LCA, materials, tally

Procedia PDF Downloads 202
15131 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 358
15130 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: energy efficiency, heritage, historical building, renovation

Procedia PDF Downloads 271
15129 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 190
15128 Mapping of Renovation Potential in Rudersdal Municipality Based on a Sustainability Indicator Framework

Authors: Barbara Eschen Danielsen, Morten Niels Baxter, Per Sieverts Nielsen

Abstract:

Europe is currently in an energy and climate crisis, which requires more sustainable solutions than what has been used to before. Europe uses 40% of its energy in buildings so there has come a significant focus on trying to find and commit to new initiatives to reduce energy consumption in buildings. The European Union has introduced a building standard in 2021 to be upheld by 2030. This new building standard requires a significant reduction of CO2 emissions from both privately and publicly owned buildings. The overall aim is to achieve a zero-emission building stock by 2050. EU is revising the Energy Performance of Buildings Directive (EPBD) as part of the “Fit for 55” package. It was adopted on March 14, 2023. The new directive’s main goal is to renovate the least energy-efficient homes in Europe. There will be a cost for the home owner with a renovation project, but there will also be an improvement in energy efficiency and, therefore, a cost reduction. After the implementation of the EU directive, many homeowners will have to focus their attention on how to make the most effective energy renovations of their homes. The new EU directive will affect almost one million Danish homes (30%), as they do not meet the newly implemented requirements for energy efficiency. The problem for this one mio homeowners is that it is not easy to decide which renovation project they should consider. The houses are build differently and there are many possible solutions. The main focus of this paper is to identify the most impactful solutions and evaluate their impact and evaluating them with a criteria based sustainability indicator framework. The result of the analysis give each homeowner an insight in the various renovation options, including both advantages and disadvantages with the aim of avoiding unnecessary costs and errors while minimizing their CO2 footprint. Given that the new EU directive impacts a significant number of home owners and their homes both in Denmark and the rest of the European Union it is crucial to clarify which renovations have the most environmental impact and most cost effective. We have evaluated the 10 most impactful solutions and evaluated their impact in an indicator framework which includes 9 indicators and covers economic, environmental as well as social factors. We have packaged the result of the analysis in three packages, the most cost effective (short term), the most cost effective (long-term) and the most sustainable. The results of the study secure transparency and thereby provides homeowners with a tool to help their decision-making. The analysis is based on mostly qualitative indicators, but it will be possible to evaluate most of the indicators quantitively in a future study.

Keywords: energy efficiency, building renovation, renovation solutions, building energy performance criteria

Procedia PDF Downloads 58
15127 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: education institutions, human capital, innovation systems, Mpumalanga Province

Procedia PDF Downloads 353
15126 Research on Architectural Steel Structure Design Based on BIM

Authors: Tianyu Gao

Abstract:

Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.

Keywords: digital architectures, BIM, steel structure, architectural design

Procedia PDF Downloads 172
15125 Life-Cycle Assessment of Residential Buildings: Addressing the Influence of Commuting

Authors: J. Bastos, P. Marques, S. Batterman, F. Freire

Abstract:

Due to demands of a growing urban population, it is crucial to manage urban development and its associated environmental impacts. While most of the environmental analyses have addressed buildings and transportation separately, both the design and location of a building affect environmental performance and focusing on one or the other can shift impacts and overlook improvement opportunities for more sustainable urban development. Recently, several life-cycle (LC) studies of residential buildings have integrated user transportation, focusing exclusively on primary energy demand and/or greenhouse gas emissions. Additionally, most papers considered only private transportation (mainly car). Although it is likely to have the largest share both in terms of use and associated impacts, exploring the variability associated with mode choice is relevant for comprehensive assessments and, eventually, for supporting decision-makers. This paper presents a life-cycle assessment (LCA) of a residential building in Lisbon (Portugal), addressing building construction, use and user transportation (commuting with private and public transportation). Five environmental indicators or categories are considered: (i) non-renewable primary energy (NRE), (ii) greenhouse gas intensity (GHG), (iii) eutrophication (EUT), (iv) acidification (ACID), and (v) ozone layer depletion (OLD). In a first stage, the analysis addresses the overall life-cycle considering the statistical model mix for commuting in the residence location. Then, a comparative analysis compares different available transportation modes to address the influence mode choice variability has on the results. The results highlight the large contribution of transportation to the overall LC results in all categories. NRE and GHG show strong correlation, as the three LC phases contribute with similar shares to both of them: building construction accounts for 6-9%, building use for 44-45%, and user transportation for 48% of the overall results. However, for other impact categories there is a large variation in the relative contribution of each phase. Transport is the most significant phase in OLD (60%); however, in EUT and ACID building use has the largest contribution to the overall LC (55% and 64%, respectively). In these categories, transportation accounts for 31-38%. A comparative analysis was also performed for four alternative transport modes for the household commuting: car, bus, motorcycle, and company/school collective transport. The car has the largest results in all impact categories. When compared to the overall LC with commuting by car, mode choice accounts for a variability of about 35% in NRE, GHG and OLD (the categories where transportation accounted for the largest share of the LC), 24% in EUT and 16% in ACID. NRE and GHG show a strong correlation because all modes have internal combustion engines. The second largest results for NRE, GHG and OLD are associated with commuting by motorcycle; however, for ACID and EUT this mode has better performance than bus and company/school transport. No single transportation mode performed best in all impact categories. Integrated assessments of buildings are needed to avoid shifts of impacts between life-cycle phases and environmental categories, and ultimately to support decision-makers.

Keywords: environmental impacts, LCA, Lisbon, transport

Procedia PDF Downloads 334
15124 Analyzing Sun Valley Music Pavilion Idaho, USA, 2008 in Relation Flexibility and Adaptability

Authors: Ola Haj Saleh

Abstract:

This study of a contemporary building attempts to identify how a building can reflect its presence within its community. The example of the pavilion is discussed here with references to adaptability and flexibility theories. The analytical methodology of the Sun Valley Pavilion discovers to what extent a public space can be flexible and adaptable to several conditions. Furthermore, redefine an existing public building in an urban landscape context, becomes more than an important place for its community as a music pavilion for the arts, it is even for the interactivity wedding parties. Thus, the Sun Valley Pavilion can have an obvious role in a community gathering place in a result that flexibility and adaptability are more economical in the long term.

Keywords: adaptability, flexibility, pavilion, tensile

Procedia PDF Downloads 112
15123 Identification of Location Parameters for Different User Types of the Inner-City Building Stock: An Austrian Example

Authors: Bernhard Bauer, Thomas Meixner, Amir Dini, Detlef Heck

Abstract:

The inner city building stock is characterized by different types of buildings of different decades and centuries and different types of historical constructions. Depending on the natural growth of a city, those types are often located in downtown areas and the surrounding suburbs. Since the population is becoming older and the variation of the different social requirements spread with the so-called 'Silver Society', city quarters have to be seen alternatively. If an area is very attractive for young students to live there because of the busy nightlife, it might not be suitable for the older society. To identify 'Location Types A, B, C' for different user groups, qualitative interviews with 24 citizens of the city of Graz (Austria) have been carried out, in order to identify the most important values for making a location or city quarter 'A', 'B', or 'C'. Furthermore these acknowledgements have been put into a softwaretool for predicting locations that are the most suitable for certain user groups. On the other hands side, investors or owners of buildings can use the tool for determining the most suitable user group for the location of their building or construction project in order to adapt the project or building stock to the requirements of the users.

Keywords: building stock, location parameters, inner city population, built environment

Procedia PDF Downloads 295
15122 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work

Authors: Fawaz A. Binsarra, Halim Boussabaine

Abstract:

The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.

Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis

Procedia PDF Downloads 497