Search results for: autonomous profiler
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 590

Search results for: autonomous profiler

200 MEET (Maximise the Erasmus Experience Together): Gains, Challenges and Proposals

Authors: Susana Olmos, Catherine Spencer

Abstract:

Every year our School in DIT (Dublin Institute of Technology) hosts approximately 80 Erasmus students from partner universities across Europe. Our own students are required to spend a compulsory 3rd year abroad on study and/or work placements. This is an extremely rewarding experience for all of the students, however, it can also be a challenging one. With this in mind, we started a project which aimed to make this transition as easy and productive as possible. The project, which is called MEET: Maximise the Erasmus Experience Together, focuses on the students’ own active engagement in learning and preparation – outside of the classroom –and their own self-directed pursuit of opportunities to develop their confidence and preparedness, which would work as an important foundation for the transformative learning that study abroad implies. We focussed on creating more structured opportunities where Erasmus students from our partner universities (currently studying at DIT) and our second-year students could interact and learn from each other, and in so doing improve both their language and intercultural skills. Our experience so far has been quite positive and we have seen how students taking part in this project have developed as autonomous learners as well as enhanced both their linguistic and intercultural knowledge. As the linguistic element of our project was one of our main priorities, we asked the students to keep a reflective diary on the activities that were organised by the group in the TL. Also, we use questionnaires as well as personal interviews to assess their development. However, there are challenges and proposals we would make to bring this project forward for the near future.

Keywords: erasmus, intercultural competence, linguistic competence, extra curriculum activities

Procedia PDF Downloads 354
199 University Lecturers' Attitudes towards Learner Autonomy in the EFL Context in Vietnam

Authors: Nhung T. Bui

Abstract:

Part of the dilemma facing educational reforms in Vietnam as in other Asian contexts is how to encourage more independence in students’ learning approaches. Since 2005, the Ministry of Education and Training of Vietnam has included the students’ ability to learn independently in its national education objectives. While learner autonomy has been viewed as a goal in the teaching and learning English as a foreign language (EFL) and there has been a considerable literature on strategies to stimulate autonomy in learners, teachers’ voices have rarely been heard. Given that teachers play a central role in helping their students to be more autonomous, especially in an inherent Confucian heritage culture like Vietnam, their attitudes towards learner autonomy should be investigated before any practical implementations could be undertaken. This paper reports significant findings of a survey questionnaire with 262 lecturers of English from 5 universities in Hanoi, Vietnam giving opinions regarding the practices and prospects of learner autonomy in their classrooms. The study reveals that lecturers perceive they should be more responsible than their students in all class-related activities; they most appreciate their students’ ability to learn cooperatively and that they consider stimulating students’ interest as the most important teaching strategy to promote learner autonomy. Lecturers, then, are strongly suggested to gradually ‘empower’ their students through the application of out-of-classroom activities; of learning activities which requires collaboration and team spirit; and of activities which could boost students’ interest in learning English.

Keywords: English as a foreign language, higher education, learner autonomy, Vietnam

Procedia PDF Downloads 246
198 Psychodidactic Strategies to Facilitate Flow of Logical Thinking in Preparation of Academic Documents

Authors: Deni Stincer Gomez, Zuraya Monroy Nasr, Luis Pérez Alvarez

Abstract:

The preparation of academic documents such as thesis, articles and research projects is one of the requirements of the higher educational level. These documents demand the implementation of logical argumentative thinking which is experienced and executed with difficulty. To mitigate the effect of these difficulties this study designed a thesis seminar, with which the authors have seven years of experience. It is taught in a graduate program in Psychology at the National Autonomous University of Mexico. In this study the authors use the Toulmin model as a mental heuristic and for the application of a set of psychodidactic strategies that facilitate the elaboration of the plot and culmination of the thesis. The efficiency in obtaining the degree in the groups exposed to the seminar has increased by 94% compared to the 10% that existed in the generations that were not exposed to the seminar. In this article the authors will emphasize the psychodidactic strategies used. The Toulmin model alone does not guarantee the success achieved. A set of actions of a psychological nature (almost psychotherapeutic) and didactics of the teacher also seem to contribute. These are actions that derive from an understanding of the psychological, epistemological and ontogenetic obstacles and the most frequent errors in which thought tends to fall when it is demanded a logical course. The authors have grouped the strategies into three groups: 1) strategies to facilitate logical thinking, 2) strategies to strengthen the scientific self and 3) strategies to facilitate the act of writing the text. In this work the authors delve into each of them.

Keywords: psychodidactic strategies, logical thinking, academic documents, Toulmin model

Procedia PDF Downloads 158
197 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle

Procedia PDF Downloads 109
196 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.

Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM

Procedia PDF Downloads 416
195 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy

Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria

Abstract:

This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.

Keywords: automation, control, sunflower, irrigation, programming, renewable energy

Procedia PDF Downloads 382
194 Closed Loop Traffic Control System Using PLC

Authors: Chinmay Shah

Abstract:

The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC.

Keywords: close loop, IR sensor, PLC, light control system

Procedia PDF Downloads 542
193 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment

Authors: U. Yerlikaya, R. T. Balkan

Abstract:

In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.

Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds

Procedia PDF Downloads 123
192 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects

Authors: Brian Romansky

Abstract:

There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.

Keywords: automation, BIM, robot, ROI.

Procedia PDF Downloads 60
191 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting

Procedia PDF Downloads 243
190 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 115
189 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 216
188 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 240
187 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)

Authors: Abdul Mannan Akhtar

Abstract:

In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.

Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection

Procedia PDF Downloads 437
186 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 142
185 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover

Authors: T. Pakulski, L. Kryza, A. Linossier

Abstract:

The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.

Keywords: education, low-cost, manipulator, robotics, rover

Procedia PDF Downloads 228
184 The Issue of Affordability in Housing and Implications for the Regional Planning of Drainage Infrastructure: A Case of Affordability as Part of Inclusive Decision Making

Authors: Kwadwo Afari Gyan

Abstract:

Cities are growing at unprecedented levels. Meanwhile, governments in the Global South are already overwhelmed by this growth and are unable to provide infrastructure proactively as expected. As a result, urban residents resort to providing their own infrastructure, such as drainage systems, as part of self-built housing development. Their small-scale, incremental housing practices, which often represent the formation of dense and diverse housing types, styles, and ages, have been identified to affect the planning of drainage systems at the regional scale. Such developments reflect the varied, affordable responses as part of a collective effort to curb regional problems, specifically flooding in this case. However, while some are included in this collective action, others are excluded as they are unable to afford to be included. This phenomenon, in addition to the formation of new autonomous localities, has led to challenges in mitigating flooding and has affected resilience to climate change. Using a qualitative approach, this paper explores how the mismatch between housing development, which occurs at an individual scale, and drainage infrastructure, which is provided at a regional scale, affects a regional effort to mitigate flooding in Tema, Ghana. It seeks to explore and reveal a relationship between affordability and inclusiveness. It also explores how density and diversity influence public infrastructure provision and their connection with affordability.

Keywords: climate change, affordability, inclusivity, equity, contextualization, regionalism

Procedia PDF Downloads 50
183 Disaster Adaptation Mechanism and Disaster Prevention Adaptation Planning Strategies for Industrial Parks in Response to Climate Change and Different Socio-Economic Disasters

Authors: Jen-Te Pai, Jao-Heng Liu, Shin-En Pai

Abstract:

The impact of climate change has intensified in recent years, causing Taiwan to face higher frequency and serious natural disasters. Therefore, it is imperative for industrial parks manufacturers to promote adaptation policies in response to climate change. On the other hand, with the rise of the international anti-terrorism situation, once a terrorist attack occurs, it will attract domestic and international media attention, especially the strategic and economic status of the science park. Thus, it is necessary to formulate adaptation and mitigation strategies under climate change and social economic disasters. After reviewed the literature about climate change, urban disaster prevention, vulnerability assessment, and risk communication, the study selected 62 industrial parks compiled by the Industrial Bureau of the Ministry of Economic Affairs of Taiwan as the research object. This study explored the vulnerability and disaster prevention and disaster relief functional assessment of these industrial parks facing of natural and socio-economic disasters. Furthermore, this study explored planned adaptation of industrial parks management section and autonomous adaptation of corporate institutions in the park. The conclusion of this study is that Taiwan industrial parks with a higher vulnerability to natural and socio-economic disasters should employ positive adaptive behaviours.

Keywords: adaptive behaviours, analytic network process, vulnerability, industrial parks

Procedia PDF Downloads 116
182 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving

Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard

Abstract:

Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.

Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time

Procedia PDF Downloads 33
181 Conceptual Modeling of the Relationship between Project Management Practices and Knowledge Absorptive Capacity Using Interpretive Structural Modeling Method

Authors: Seyed Abdolreza Mosavi, Alireza Babakhan, Elham Sadat Hoseinifard

Abstract:

Knowledge-based firms need to design mechanisms for continuous absorptive and creation of knowledge in order to ensure their survival in the competitive arena and to follow the path of development. Considering the project-oriented nature of product development activities in knowledge-based firms on the one hand and the importance of analyzing the factors affecting knowledge absorptive capacity in these firms on the other, the purpose of this study is to identify and classify the factors affecting project management practices on absorptive knowledge capacity. For this purpose, we have studied and reviewed the theoretical literature in the field of project management and absorptive knowledge capacity so as to clarify its dimensions and indexes. Then, using the ISM method, the relationship between them has been studied. To collect data, 21 questionnaires were distributed in project-oriented knowledge-based companies. The results of the ISM method analysis provide a model for the relationship between project management activities and knowledge absorptive capacity, which includes knowledge acquisition capacity, scope management, time management, cost management, quality management, human resource management, communications management, procurement management, risk management, stakeholders management and integration management. Having conducted the MICMAC analysis, we divided the variables into three groups of independent, relational and dependent variables and came up with no variables to be included in the group of autonomous variables.

Keywords: knowledge absorptive capacity, project management practices, knowledge-based firms, interpretive structural modeling

Procedia PDF Downloads 176
180 The Post-Hegemony of Post-Capitalism: Towards a Political Theory of Open Cooperativism

Authors: Vangelis Papadimitropoulos

Abstract:

The paper is part of the research project “Techno-Social Innovation in the Collaborative Economy'', funded by the Hellenic Foundation of Research and Innovation for the years 2022-2024. The research project examines the normative and empirical conditions of grassroots technologically driven innovation, potentially enabling the transition towards a commons-oriented post-capitalist economy. The project carries out a conceptually led and empirically grounded multi-case study of the digital commons, open-source technologies, platform cooperatives, open cooperatives and Distributed Autonomous Organizations (DAOs) on the Blockchain. The methodological scope of research is interdisciplinary inasmuch as it comprises political theory, economics, sustainability science and computer science, among others. The research draws specifically on Michel Bauwens and Vasilis Kostakis' model of open cooperativism between the commons, ethical market entities and a partner state. Bauwens and Kostakis advocate for a commons-based counter-hegemonic post-capitalist transition beyond and against neoliberalism. The research further employs Laclau and Mouffe's discourse theory of hegemony to introduce a post-hegemonic conceptualization of the model of open cooperativism. Thus, the paper aims to outline the theoretical contribution of the research project to contemporary political theory debates on post-capitalism and the collaborative economy.

Keywords: open cooperativism, techno-social innovation, post-hegemony, post-capitalism

Procedia PDF Downloads 41
179 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study

Authors: M. Hadavi, Z. Hashemi

Abstract:

Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.

Keywords: vocabulary leaning strategies, medical sciences, students, linguistics

Procedia PDF Downloads 427
178 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 155
177 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy

Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt

Abstract:

Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.

Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles

Procedia PDF Downloads 183
176 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection

Authors: Masahiro Miyaji

Abstract:

When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).

Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety

Procedia PDF Downloads 328
175 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 163
174 Analyzing Information Management in Science and Technology Institute Libraries in India

Authors: P. M. Naushad Ali

Abstract:

India’s strength in basic research is recognized internationally. Science and Technology research in India has been performed by six distinct bodies or organizations such as Cooperative Research Associations, Autonomous Research Council, Institute under Ministries, Industrial R&D Establishment, Universities, Private Institutions. All most all these institutions are having a well-established library/information center to cater the information needs of their users like scientists and technologists. Information Management (IM) comprises disciplines concerned with the study and the effective and efficient management of information and resources, products and services as well as the understanding of the involved technologies and the people engaged in this activity. It is also observed that the libraries and information centers in India are also using modern technologies for the management of various activities and services to serve their users in a better way. Science and Technology libraries in the country are usually better equipped because the investment in Science and Technology in the country are much larger than those in other fields. Thus, most of the Science and Technology libraries are equipped with modern IT-based tools for handling and management of library services. In spite of these facts Science and Technology libraries are having all the characteristics of a model organization where computer application is found most successful, however, the adoption of this IT based management tool is not uniform in these libraries. The present study will help to know about the level use of IT-based management tools for the information management of Science and Technology libraries in India. The questionnaire, interview, observation and document review techniques have been used in data collection. Finally, the author discusses findings of the study and put forward some suggestions to improve the quality of Science and Technology institute library services in India.

Keywords: information management, science and technology libraries, India, IT-based tools

Procedia PDF Downloads 373
173 Progress in Combining Image Captioning and Visual Question Answering Tasks

Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima

Abstract:

Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.

Keywords: image captioning, visual question answering, deep learning, natural language processing

Procedia PDF Downloads 53
172 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 212
171 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 102