Search results for: agroforestry system design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26195

Search results for: agroforestry system design

25805 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments

Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas

Abstract:

This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas. The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behaviour of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.

Keywords: DEMO, EHCL, ITER, LLCB TBM

Procedia PDF Downloads 364
25804 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental Natural Frequency, Chromite Composite Floor System, Finite Element Method, low and high frequency floors, Comfortableness, resonance.

Procedia PDF Downloads 437
25803 Smart Unmanned Parking System Based on Radio Frequency Identification Technology

Authors: Yu Qin

Abstract:

In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.

Keywords: RFID, embedded system, unmanned, parking management

Procedia PDF Downloads 313
25802 Defects Estimation of Embedded Systems Components by a Bond Graph Approach

Authors: I. Gahlouz, A. Chellil

Abstract:

The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.

Keywords: estimation, bond graph, controllability, observability

Procedia PDF Downloads 393
25801 Shape-Changing Structure: A Prototype for the Study of a Dynamic and Modular Structure

Authors: Annarita Zarrillo

Abstract:

This research is part of adaptive architecture, reflecting the evolution that the world of architectural design is going through. Today's architecture is no longer seen as a static system but, conversely, as a dynamic system that changes in response to the environment and the needs of users. One of the major forms of adaptivity is represented by kinetic structures. This study aims to underline the importance of experimentation on physical scale models for the study of dynamic structures and to present the case study of a modular kinetic structure designed through the use of parametric design software and created as a prototype in the laboratories of the Royal Danish Academy in Copenhagen.

Keywords: adaptive architecture, architectural application, kinetic structures, modular prototype

Procedia PDF Downloads 110
25800 Evaluation of Structural Behavior of Wide Sleepers on Asphalt Trackbed Due to Embedded Shear Keys

Authors: Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju, Woo Young Jung

Abstract:

Korea Train eXpress (KTX) is now being operated, which allows Korea being one of the countries that operates the high-speed rail system. The high-speed rail has its advantage of short time transportation of population and materials, which lead to many researches performed in this matter. In the case of high speed classical trackbed system, the maintenance and usability of gravel ballast system is costly. Recently, the concrete trackbed structure has been introduced as a replacement of classical trackbed system. In this case, the sleeper plays a critical role. Current study investigated to develop the track sleepers readily applicable to the top of the asphalt trackbed, as part of the trcakbed study utilizing the asphalt material. Among many possible shapes and design of sleepers, current study proposed two types of wide-sleepers according to the shear-key installation method. The structural behavior analysis and safety evaluation on each case was conducted using Korean design standard.

Keywords: wide sleepers, asphalt, high-speed railway, shear-key

Procedia PDF Downloads 414
25799 Design and Development of E-Commerce Web Application for Shopping Management System

Authors: Siddarth A., Bhoomika K.

Abstract:

Campuskart is a web-based platform that enables college students to buy and sell various items related to electronics, books, project materials, and electronic gadgets at reasonable prices. The application offers students the opportunity to resell their items at valuable and worthwhile prices, while also providing customers with the chance to purchase items at a lower price than the market price. The forthcoming paper will outline the various processes involved in developing the web application, including the design process, methodology, and overall functioning of the system. It will offer a comprehensive overview of how the platform operates and how it can benefit college students looking for affordable and convenient options for buying and selling various items.

Keywords: campuskart, web development, data structures, studentfriendlywebsite

Procedia PDF Downloads 50
25798 Designing for Wearable Interactions: Exploring Care Design for Design Anthropology and Participatory Design

Authors: Wei-Chen Chang, Yu-Cheng Pei

Abstract:

This research examines wearable interaction design to mediate the design anthropology and participatory design found in technology and fashion. We will discuss the principles of design anthropology and participatory design using a wearable and fashion product process to transmit the ‘people-situation-reason-object’ method and analyze five sense applied examples that provide new thinking for designers engaged in future industry. Design anthropology and Participatory Design attempt to engage physiological and psychological design through technology-function, meaning-form and fashion aesthetics to achieve cognition between user and environment. The wearable interaction provides technological characteristics and semantic ideas transmitted to craft-cultural, collective, cheerful and creative performance. It is more confident and innovative attempt, that is able to achieve a joyful, fundamental interface. This study takes two directions for cultural thinking as the basis to establish a set of life-craft designs with interactive experience objects by users that assist designers in examining the sensual feelings to initiate a new lifestyle value.

Keywords: design anthropology, wearable design, design communication, participatory design

Procedia PDF Downloads 216
25797 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 103
25796 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing

Procedia PDF Downloads 194
25795 Portable Hands-Free Process Assistant for Gas Turbine Maintenance

Authors: Elisabeth Brandenburg, Robert Woll, Rainer Stark

Abstract:

This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.

Keywords: paper prototyping, smart glasses, turbine maintenance, user centered design

Procedia PDF Downloads 303
25794 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly

Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee

Abstract:

Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.

Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect

Procedia PDF Downloads 611
25793 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 383
25792 A Critical Geography of Reforestation Program in Ghana

Authors: John Narh

Abstract:

There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.

Keywords: translocality, deforestation, forest management, social network

Procedia PDF Downloads 74
25791 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais, ADS

Procedia PDF Downloads 448
25790 Reviewers’ Perception of the Studio Jury System: How They View its Value in Architecture and Design Education

Authors: Diane M. Bender

Abstract:

In architecture and design education, students learn and understand their discipline through lecture courses and within studios. A studio is where the instructor works closely with students to help them understand design by doing design work. The final jury is the culmination of the studio learning experience. It’s value and significance are rarely questioned. Students present their work before their peers, instructors, and invited reviewers, known as jurors. These jurors are recognized experts who add a breadth of feedback to students mostly in the form of a verbal critique of the work. Since the design review or jury has been a common element of studio education for centuries, jurors themselves have been instructed in this format. Therefore, they understand its value from both a student and a juror perspective. To better understand how these reviewers see the value of a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines were involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=108) provided written comments about their perceived value of the studio review system. The average respondent was male (64%), between 40-49 years of age, and has attained a master’s degree. Qualitative analysis with thematic coding revealed several themes. Reviewers view the final jury as important because it provides a variety of perspectives from unbiased external practitioners and prepares students for similar presentation challenges they will experience in professional practice. They also see it as a way to validate the assessment and evaluation of students by faculty. In addition, they see a personal benefit for themselves and their firm – the ability to network with fellow jurors, professors, and students (i.e., future colleagues). Respondents also provided additional feedback about the jury system and studio education in general. Typical responses included a desire for earlier engagement with students; a better explanation from the instructor about the project parameters, rubrics/grading, and guidelines for juror involvement; a way to balance giving encouraging feedback versus overly critical comments; and providing training for jurors prior to reviews. While this study focused on the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.

Keywords: assessment, design, jury, studio

Procedia PDF Downloads 47
25789 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 533
25788 Parametric Study for Optimal Design of Hybrid Bridge Joint

Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho

Abstract:

Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.

Keywords: parametric study, optimal design, hybrid bridge, finite element analysis

Procedia PDF Downloads 406
25787 Smart Product-Service System Innovation with User Experience: A Case Study of Chunmi

Authors: Ying Yu, Wen-Chi Kuo, Tung-Jung Sung

Abstract:

The Product-Service System (PSS) has received widespread attention due to the increasing global competition in manufacturing and service markets. Today’s smart products and services are driven by Internet of things (IoT) technologies which will promote the transformation from traditional PSS to smart PSS. Although the smart PSS has some of technological achievements in businesses, it often ignores the real demands of target users when using products and services. Therefore, designers should know and learn the User Experience (UX) of smart products, services and systems. However, both of academia and industry still lack relevant development experience of smart PSS since it is an emerging field. In doing so, this is a case study of Xiaomi’s Chunmi, the largest IoT platform in the world, and addresses the two major issues: (1) why Chunmi should develop smart PSS strategies with UX; and (2) how Chunmi could successfully implement the strategic objectives of smart PSS through the design. The case study results indicated that: (1) the smart PSS can distinguish competitors by their unique UX which is difficult to duplicate; (2) early user engagement is crucial for the success of smart PSS; and (3) interaction, expectation, and enjoyment can be treated as a three-dimensional evaluation of UX design for smart PSS innovation. In conclusion, the smart PSS can gain competitive advantages through good UX design in the market.

Keywords: design, smart PSS, user experience, user engagement

Procedia PDF Downloads 117
25786 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 496
25785 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 441
25784 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency

Procedia PDF Downloads 228
25783 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame

Authors: Seyed Saeid Tabaee, Omid Bahar

Abstract:

Nowadays, using energy dissipation devices has been commonly used in structures. A high rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely complicate analysis and design of such structures. This effect may be generally represented by equivalent viscous damping. The equivalent viscous damping may be obtained from the expected hysteretic behavior under the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel moment resisting frame (MRF), which its performance is enhanced by a buckling restrained brace (BRB) system has been evaluated. Having the foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural frequency of the system. Two steel moment frame structures, one equipped with BRB, and the other without BRB are simultaneously studied. The extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, the contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.

Keywords: buckling restrained brace, direct displacement based design, dual systems, hysteretic damping, moment resisting frames

Procedia PDF Downloads 417
25782 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components

Authors: Najeh Lakhoua

Abstract:

Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.

Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture

Procedia PDF Downloads 177
25781 Design Optimization of Miniature Mechanical Drive Systems Using Tolerance Analysis Approach

Authors: Eric Mxolisi Mkhondo

Abstract:

Geometrical deviations and interaction of mechanical parts influences the performance of miniature systems.These deviations tend to cause costly problems during assembly due to imperfections of components, which are invisible to a naked eye.They also tend to cause unsatisfactory performance during operation due to deformation cause by environmental conditions.One of the effective tools to manage the deviations and interaction of parts in the system is tolerance analysis.This is a quantitative tool for predicting the tolerance variations which are defined during the design process.Traditional tolerance analysis assumes that the assembly is static and the deviations come from the manufacturing discrepancies, overlooking the functionality of the whole system and deformation of parts due to effect of environmental conditions. This paper presents an integrated tolerance analysis approach for miniature system in operation.In this approach, a computer-aided design (CAD) model is developed from system’s specification.The CAD model is then used to specify the geometrical and dimensional tolerance limits (upper and lower limits) that vary component’s geometries and sizes while conforming to functional requirements.Worst-case tolerances are analyzed to determine the influenced of dimensional changes due to effects of operating temperatures.The method is used to evaluate the nominal conditions, and worse case conditions in maximum and minimum dimensions of assembled components.These three conditions will be evaluated under specific operating temperatures (-40°C,-18°C, 4°C, 26°C, 48°C, and 70°C). A case study on the mechanism of a zoom lens system is used to illustrate the effectiveness of the methodology.

Keywords: geometric dimensioning, tolerance analysis, worst-case analysis, zoom lens mechanism

Procedia PDF Downloads 149
25780 Aqua Logo Design 2013 Decomposition and Meanings

Authors: Peni Rizki

Abstract:

This article presents decomposition on Aqua logo design 2013 as well as exploration on the meanings denoting marketing resolution. In the analysis, it is described decomposition details on Aqua logo design 2013, a semiotics implementation on marketing enterprise. 2013’s design is different in parts from its first establishment in 1973. Upon that, design elements such as pictures and colors are examined in semiotic theories of sign utilized as directives to the meaning constructed. Each part of the design is analyzed based on its significations that generate denotation and connotation as well as myth. At the end will be concluded the converses of Aqua logo design 2013 in reflection to its initiated marketing creativity; what pictures and colors do in it.

Keywords: design, aqua, semiotics, signification

Procedia PDF Downloads 357
25779 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application

Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel

Abstract:

Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.

Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter

Procedia PDF Downloads 269
25778 Local Tax Map Software System Development

Authors: Smithinun Thairoongrojana

Abstract:

This research is a qualitative research with three main purposes: (1) to develop the local tax map software system to be linked to the main Local Tax Map System (LTAX3000) system; (2) to design and develop a program for tax data fieldwork on wireless devices and link it to LTAX3000 database of Surat Thani Municipality; (3) to develop the human resource responsible for the fieldwork to be able to use the program and maintain the system and also to be able to work with the dynamic of technologies. In-depth interviews with the two groups of samples, the board of Surat Thani Municipality and operation staff responsible for observing and taxing fieldworks were conducted. The result of this study demonstrates the new developed fieldworks system that can be used both stand-alone usage and networking usage. The fieldworks system to collect and store the variety of taxing information within Surat Thani Municipality will be explained. Then the fieldwork operation process development and the replacement of transferring and storing the information via the network communication.

Keywords: Local tax map, software system development, wireless devices, human resource

Procedia PDF Downloads 180
25777 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: electrowinning, intercell bars, PV energy, current modulation

Procedia PDF Downloads 137
25776 Design and Implementation of an Efficient Solar-Powered Pumping System

Authors: Mennatallah M. Fouad, Omar Hussein, Lamia A. Shihata

Abstract:

The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions.

Keywords: efficient solar pumping, PV cleaning, PV cooling, PV-operated water pump

Procedia PDF Downloads 116