Search results for: adjusted rorschach comprehensive system
19940 Residencial Inclusion Strategies for Homeless Immigrants: The Case of Spain
Authors: Raluca Cosmina Budian
Abstract:
The homeless population in Spain, particularly among immigrants, has been a persistent and multifaceted issue. The government has implemented various housing public policies over the years to address homelessness, ranging from shelter programs to initiatives promoting permanent housing solutions. However, understanding the effectiveness of these policies requires insight from the very individuals and professionals directly impacted by or involved in their execution. This research sheds light on national strategies (The 2015-2020 Comprehensive National Strategy for the Homeless and National Strategy to Combat Homelessness in Spain 2023-2030) aimed at tackling homelessness in Spain, with a focus on the evolving landscape of housing public policies and their relationship with the homeless population. We investigate how these strategies have transformed over time and their impact on the inclusion of this vulnerable group. Furthermore, we explore the perspectives of homeless immigrants, distinguishing between those with an extended residency in Spain and those who have more recently arrived (less than 2 years); and distinguishing between women and men. Additionally, we incorporate insights from 13 interviews with professionals dedicated to serving the homeless population. These insights offer a deeper understanding of the intricacies of current homelessness service provision. Our findings reveal the complex dynamics of providing services to homeless individuals, and the importance of aligning these efforts with the broader national strategies for tackling homelessness. Drawing on a comprehensive dataset, we offer a nuanced view of the challenges and successes in implementing inclusive housing policies in the Spanish context. Our research highlights the importance of collaboration between policy makers, service providers and advocates to create a cohesive and effective approach. By fostering such collaboration, we aim to create a more inclusive and comprehensive strategy to address homelessness in Spain and possible affordable housing proposals for this vulnerable group. It´s only underscores the importance of tailored approaches but also contributes to the broader discourse on housing public policies' ability to address homelessness and foster integration. We suggest that a more comprehensive approach, considering the unique needs of immigrants and working in collaboration with professionals in the field, is essential for the development of effective strategies to combat homelessness and ensure the right to adequate housing for all.Keywords: housing, homeless, public policy, Spain
Procedia PDF Downloads 7519939 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 5719938 Smart Irrigation System
Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak
Abstract:
In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino
Procedia PDF Downloads 61519937 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 6719936 Globalisation, Growth and Sustainability in Sub-Saharan Africa
Authors: Ourvashi Bissoon
Abstract:
Sub-Saharan Africa in addition to being resource rich is increasingly being seen as having a huge growth potential and as a result, is increasingly attracting MNEs on its soil. To empirically assess the effectiveness of GDP in tracking sustainable resource use and the role played by MNEs in Sub-Saharan Africa, a panel data analysis has been undertaken for 32 countries over thirty-five years. The time horizon spans the period 1980-2014 to reflect the evolution from before the publication of the pioneering Brundtland report on sustainable development to date. Multinationals’ presence is proxied by the level of FDI stocks. The empirical investigation first focuses on the impact of trade openness and MNE presence on the traditional measure of economic growth namely the GDP growth rate, and then on the genuine savings (GS) rate, a measure of weak sustainability developed by the World Bank, which assumes the substitutability between different forms of capital and finally, the impact on the adjusted Net National Income (aNNI), a measure of green growth which caters for the depletion of natural resources is examined. For countries with significant exhaustible natural resources and important foreign investor presence, the adjusted net national income (aNNI) can be a better indicator of economic performance than GDP growth (World Bank, 2010). The issue of potential endogeneity and reverse causality is also addressed in addition to robustness tests. The findings indicate that FDI and openness contribute significantly and positively to the GDP growth of the countries in the sample; however there is a threshold level of institutional quality below which FDI has a negative impact on growth. When the GDP growth rate is substituted for the GS rate, a natural resource curse becomes evident. The rents being generated from the exploitation of natural resources are not being re-invested into other forms of capital namely human and physical capital. FDI and trade patterns may be setting the economies in the sample on a unsustainable path of resource depletion. The resource curse is confirmed when utilising the aNNI as well, thus implying that GDP growth measure may not be a reliable to capture sustainable development.Keywords: FDI, sustainable development, genuine savings, sub-Saharan Africa
Procedia PDF Downloads 21519935 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems
Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille
Abstract:
Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable
Procedia PDF Downloads 39919934 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 5919933 Measurement and Monitoring of Graduate Attributes via iCGPA Implementation and ACADEMIA Programming: UNIMAS Case Study
Authors: Shanti Faridah Salleh, Azzahrah Anuar, Hamimah Ujir, Rohana Sapawi, Wan Hashim Wan Ibrahim, Noraziah Abdul Wahab, Majina Sulaiman, Raudhah Ahmadi, Al-Khalid Othman, Johari Abdullah
Abstract:
Integrated Cumulative Grade Point Average or iCGPA is an evaluation and reporting system that represents a comprehensive development of students’ achievement in their academic programs. Universiti Malaysia Sarawak, UNIMAS has started its implementation of iCGPA in 2016. iCGPA is driven by the Outcome-Based Education (OBE) system that has been long integrated into the higher education in Malaysia. iCGPA is not only a tool to enhance the OBE concept through constructive alignment but it is also an integrated mechanism to assist various stakeholders in making decisions or planning for program improvement. The outcome of this integrated system is the reporting of students’ academic performance in terms of cognitive (knowledge), psychomotor (skills), and affective (attitude) of which the students acquire throughout the duration of their study. The iCGPA reporting illustrates the attainment of student’s attribute in the eight domains of learning outcomes listed in the Malaysian Qualifications Framework (MQF). This paper discusses on the implementation of iCGPA in UNIMAS on the policy and strategy to direct the whole university to implement the iCGPA. The steps and challenges in integrating the exsting Outcome-Based Education and utilising iCGPA as a tool to quantify the students’ achievement are also highlighted in this paper. Finally, the ACADEMIA system, which is a dedicated centralised program ensure the implementation of iCGPA is a success has been developed. This paper discusses the structure and the analysis of ACADEMIA program and concludes the analysis made on the improvement made on the implementation of constructive alignment in all 40 programs involves in iCGPA implementation.Keywords: constructive alignment, holistic graduates, mapping of assessment, programme outcome
Procedia PDF Downloads 20819932 Assessing Firm Readiness to Implement Cloud Computing: Toward a Comprehensive Model
Authors: Seyed Mohammadbagher Jafari, Elahe Mahdizadeh, Masomeh Ghahremani
Abstract:
Nowadays almost all organizations depend on information systems to run their businesses. Investment on information systems and their maintenance to keep them always in best situation to support firm business is one of the main issues for every organization. The new concept of cloud computing was developed as a technical and economic model to address this issue. In cloud computing the computing resources, including networks, applications, hardwares and services are configured as needed and are available at the moment of request. However, migration to cloud is not an easy task and there are many issues that should be taken into account. This study tries to provide a comprehensive model to assess a firm readiness to implement cloud computing. By conducting a systematic literature review, four dimensions of readiness were extracted which include technological, human, organizational and environmental dimensions. Every dimension has various criteria that have been discussed in details. This model provides a framework for cloud computing readiness assessment. Organizations that intend to migrate to cloud can use this model as a tool to assess their firm readiness before making any decision on cloud implementation.Keywords: cloud computing, human readiness, organizational readiness, readiness assessment model
Procedia PDF Downloads 39519931 Reliability Analysis in Power Distribution System
Authors: R. A. Deshpande, P. Chandhra Sekhar, V. Sankar
Abstract:
In this paper, we discussed the basic reliability evaluation techniques needed to evaluate the reliability of distribution systems which are applied in distribution system planning and operation. Basically, the reliability study can also help to predict the reliability performance of the system after quantifying the impact of adding new components to the system. The number and locations of new components needed to improve the reliability indices to certain limits are identified and studied.Keywords: distribution system, reliability indices, urban feeder, rural feeder
Procedia PDF Downloads 77619930 A Study on Design for Parallel Test Based on Embedded System
Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun
Abstract:
With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)
Procedia PDF Downloads 30519929 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 78919928 Assessing Pain Using Morbid Motion Monitor System in the Pain Management of Nurse Practitioner
Authors: Mohammad Reza Dawoudi
Abstract:
With the increasing rate of patients suffering from chronic pain, several methods for evaluating of chronic pain are suggested. Motion of morbid has been defined as the rate of pine and it is linked with various co-morbid conditions. This study provides a summary of procedure useful to statistics performing direct behavioral observation in hospital settings. We describe the need for and usefulness of comprehensive “morbid motions” observations; provide a primer on the identification, definition, and assessment of morbid behaviors; and outline and discuss specific statistical procedures, including formulating referral motions, describing and conducting the observation. We also provide practical devices for observing and analyzing the obtained information into a report that guides clinical intervention.Keywords: assessing pain, DNA modeling, image matching technique, pain scale
Procedia PDF Downloads 40919927 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System
Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang
Abstract:
With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.Keywords: high renewable energy penetration, inertia of power system, motor-generator pair (MGP) system, virtual synchronous generator (VSG), techno-economic analysis
Procedia PDF Downloads 45219926 Preliminary Experience in Multiple Green Health Hospital Construction
Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang
Abstract:
Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.Keywords: energy efficiency, environmental education, green hospital, sustainable development
Procedia PDF Downloads 7919925 Valorization of Surveillance Data and Assessment of the Sensitivity of a Surveillance System for an Infectious Disease Using a Capture-Recapture Model
Authors: Jean-Philippe Amat, Timothée Vergne, Aymeric Hans, Bénédicte Ferry, Pascal Hendrikx, Jackie Tapprest, Barbara Dufour, Agnès Leblond
Abstract:
The surveillance of infectious diseases is necessary to describe their occurrence and help the planning, implementation and evaluation of risk mitigation activities. However, the exact number of detected cases may remain unknown whether surveillance is based on serological tests because identifying seroconversion may be difficult. Moreover, incomplete detection of cases or outbreaks is a recurrent issue in the field of disease surveillance. This study addresses these two issues. Using a viral animal disease as an example (equine viral arteritis), the goals were to establish suitable rules for identifying seroconversion in order to estimate the number of cases and outbreaks detected by a surveillance system in France between 2006 and 2013, and to assess the sensitivity of this system by estimating the total number of outbreaks that occurred during this period (including unreported outbreaks) using a capture-recapture model. Data from horses which exhibited at least one positive result in serology using viral neutralization test between 2006 and 2013 were used for analysis (n=1,645). Data consisted of the annual antibody titers and the location of the subjects (towns). A consensus among multidisciplinary experts (specialists in the disease and its laboratory diagnosis, epidemiologists) was reached to consider seroconversion as a change in antibody titer from negative to at least 32 or as a three-fold or greater increase. The number of seroconversions was counted for each town and modeled using a unilist zero-truncated binomial (ZTB) capture-recapture model with R software. The binomial denominator was the number of horses tested in each infected town. Using the defined rules, 239 cases located in 177 towns (outbreaks) were identified from 2006 to 2013. Subsequently, the sensitivity of the surveillance system was estimated as the ratio of the number of detected outbreaks to the total number of outbreaks that occurred (including unreported outbreaks) estimated using the ZTB model. The total number of outbreaks was estimated at 215 (95% credible interval CrI95%: 195-249) and the surveillance sensitivity at 82% (CrI95%: 71-91). The rules proposed for identifying seroconversion may serve future research. Such rules, adjusted to the local environment, could conceivably be applied in other countries with surveillance programs dedicated to this disease. More generally, defining ad hoc algorithms for interpreting the antibody titer could be useful regarding other human and animal diseases and zoonosis when there is a lack of accurate information in the literature about the serological response in naturally infected subjects. This study shows how capture-recapture methods may help to estimate the sensitivity of an imperfect surveillance system and to valorize surveillance data. The sensitivity of the surveillance system of equine viral arteritis is relatively high and supports its relevance to prevent the disease spreading.Keywords: Bayesian inference, capture-recapture, epidemiology, equine viral arteritis, infectious disease, seroconversion, surveillance
Procedia PDF Downloads 29719924 Comprehensive Approach to Enhance Green Buildings in Urban Areas
Authors: M. Pena, J. Shin, H. Park
Abstract:
The main objective of any engineering activity is the development of a system that fulfills the specific economic, social or environmental needs. Green growth policies, as a system, targets to satisfy two main needs: economic and environmental growth. Cities are complex systems composed of varied characteristics such as differences in socio-environmental conditions and local affordability, among others. Thus, commissioned policies are required to address these differences and to ensure green development. A more maintainable and justifiable, resource-efficient green growth can be obtained in urban areas if multi-criteria framework of policies relevant to green buildings is designed. Reason is that, this approach fits to target the differences and unique conditions of urban areas. By following the principles of axiomatic design, this paper urges to derive a framework for the application of green buildings policies in urban areas with distinctive socio-economic and environmental characteristics. Functional requirements defined as principles to ensure green growth and design parameters are identified in each set of conditions. Design matrices are constructed for each group of urban areas. Thus, the understanding of the needs and differences for each group of urban areas and the methodology to ensure green buildings is achieved.Keywords: axiomatic design, green growth, sustainable development, urban planning
Procedia PDF Downloads 35219923 A Comprehensive Overview of Solar and Vertical Axis Wind Turbine Integration Micro-Grid
Authors: Adnan Kedir Jarso, Mesfin Megra Rorisa, Haftom Gebreslassie Gebregwergis, Frie Ayalew Yimam, Seada Hussen Adem
Abstract:
A microgrid is a small-scale power grid that can operate independently or in conjunction with the main power grid. It is a promising solution for providing reliable and sustainable energy to remote areas. The integration of solar and vertical axis wind turbines (VAWTs) in a microgrid can provide a stable and efficient source of renewable energy. This paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid. The paper discusses the design, operation, and control of a microgrid that integrates solar and VAWTs. The paper also examines the performance of the microgrid in terms of efficiency, reliability, and cost-effectiveness. The paper highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper concludes that the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper recommends further research to optimize the design and operation of a microgrid that integrates solar and VAWTs. The paper also recommends the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs. In conclusion, the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid and highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper recommends further research and the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs.Keywords: hybrid generation, intermittent power, optimization, photovoltaic, vertical axis wind turbine
Procedia PDF Downloads 9719922 Accounting Management Information System for Convenient Shop in Bangkok Thailand
Authors: Anocha Rojanapanich
Abstract:
The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle
Procedia PDF Downloads 42019921 IoT Based Information Processing and Computing
Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed
Abstract:
The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.Keywords: IoT, computing, information processing, Iot computing
Procedia PDF Downloads 18819920 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches
Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar
Abstract:
Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework
Procedia PDF Downloads 12019919 Extra Skin Removal Surgery and Its Effects: A Comprehensive Review
Authors: Rebin Mzhda Mohammed, Hoshmand Ali Hama Agha
Abstract:
Excess skin, often consequential to substantial weight loss or the aging process, introduces physical discomfort, obstructs daily activities, and undermines an individual's self-esteem. As these challenges become increasingly prevalent, the need to explore viable solutions grows in significance. Extra skin removal surgery, colloquially known as body contouring surgery, has emerged as a compelling intervention to ameliorate the physical and psychological burdens of excess skin. This study undertakes a comprehensive review to illuminate the intricacies of extra skin removal surgery, encompassing its diverse procedures, associated risks, benefits, and psychological implications on patients. The methodological approach adopted involves a systematic and exhaustive review of pertinent scholarly literature sourced from reputable databases, including PubMed, Google Scholar, and specialized cosmetic surgery journals. Articles are meticulously curated based on their relevance, credibility, and recency. Subsequently, data from these sources are synthesized and categorized, facilitating a comprehensive understanding of the subject matter. Qualitative analysis serves to unravel the nuanced psychological effects, while quantitative data, where available, are harnessed to underpin the study's conclusions. In terms of major findings, the research underscores the manifold advantages of extra skin removal surgery. Patients experience a notable improvement in physical comfort, amplified mobility, enhanced self-confidence, and a newfound ability to don clothing comfortably. Nonetheless, the benefits are juxtaposed with potential risks, encompassing infection, scarring, hematoma, delayed healing, and the challenge of achieving symmetry. A salient discovery is the profound psychological impact of the surgery, as patients consistently report elevated body image satisfaction, heightened self-esteem, and a substantial enhancement in overall quality of life. In summation, this research accentuates the pivotal role of extra skin removal surgery in ameliorating the intricate interplay of physical and psychological difficulties posed by excess skin. By elucidating the diverse procedures, associated risks, and psychological outcomes, the study contributes to a comprehensive and informed comprehension of the surgery's multifaceted effects. Therefore, individuals contemplating this transformative surgical option are equipped with comprehensive insights, ultimately fostering informed decision-making, guided by the expertise of medical professionals.Keywords: extra skin removal surgery, body contouring, abdominoplasty, brachioplasty, thigh lift, body lift, benefits, risks, psychological effects
Procedia PDF Downloads 6619918 Response to Comprehensive Stress of Growing Greylag Geese Offered Alternative Fiber Sources
Authors: He Li Wen, Meng Qing Xiang, Li De Yong, Zhang Ya Wei, Ren Li Ping
Abstract:
Stress always exerts some extent adverse effects on the animal production, food safety and quality concerns. Stress is commonly-seen in livestock industry, but there is rare literature focusing on the effects of nutrition stress. What’s more, the research always concentrates on the effect of single stress additionally, there is scarce information about the stress effect on waterfowl like goose as they are commonly thought to be tolerant to stress. To our knowledge, it is not always true. The object of this study was to evaluate the response of growing Greylag geese offered different fiber sources to the comprehensive stress, primarily involving the procedures of fasting, transport, capture, etc. The birds were randomly selected to rear with the diets differing in fiber source, being corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS), respectively. Blood samples designated for the determination of stress status were collected before (pre-stress ) and after (post-stress ) the stressors carried out. No difference (P>0.05) was found on the pre-stress blood parameters of growing Greylags fed alternative fiber sources. Irrespective of the dietary differences, the comprehensive stress decreased (P<0.01) the concentration of SOD and increased (P<0.01) that of CK. Between the dietary treatments, the birds fed CSS had a higher (P<0.05)post-stress concentration of MDA than those offered SECS, along with a similarity to those fed the other two fiber sources. There was no difference (P>0.05) found on the stress response of the birds fed different fiber sources. In conclusion, SOD and CK concentration in blood may be more sensitive in indicating stress status and dietary fiber source exerted no effect on the stress response of growing Greylags. There is little chance to improve the stress status by ingesting different fiber sources.Keywords: blood parameter, fiber source, Greylag goose, stress
Procedia PDF Downloads 51819917 Absurdity as a Catalyst for Reflection: A Study of Tawfiq Al-Hakim’s The Fate of a Cockroach
Authors: Adaoma Igwedibia, Obetta Emmanuela
Abstract:
The use of absurdity as a catalyst for reflection has gained attention in various domains, including philosophy, literature, and psychology. Absurdity, characterised by its inherent contradiction and irrationality, has been considered a potent tool for stimulating reflection and generating meaningful insights. However, despite its conceptual appeal, a comprehensive understanding of the effectiveness and potential limitations of absurdity in this context remains insufficiently explored. This paper aims to address this gap in knowledge by critically examining the role of absurdity in stimulating reflection and uncovering its precise mechanisms for generating meaningful insights. By reviewing relevant literature and theories, we seek to shed light on the factors that influence the effectiveness of absurdity as a catalyst for reflection and explore its potential limitations. Furthermore, this study intends to provide practical implications for the utilisation of absurdity in various fields, such as education, creativity, and personal development. Through a thorough investigation of existing research and the identification of areas for further exploration, this paper aims to contribute to a more comprehensive understanding of the role of absurdity in stimulating reflection and generating meaningful insights.Keywords: absurdity, catalyst, reflection, effectiveness
Procedia PDF Downloads 7419916 Distributed Multi-Agent Based Approach on Intelligent Transportation Network
Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar
Abstract:
With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of humans, vehicle, roadside infrastructure, and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the report proposes a distributed multi-agent C-ITS. The system consists of Roadside Sub-system, Vehicle Sub-system, and Personal Sub-system. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.Keywords: distributed system, artificial intelligence, multi-agent, cooperative intelligent transportation system
Procedia PDF Downloads 21419915 First Order Filter Based Current-Mode Sinusoidal Oscillators Using Current Differencing Transconductance Amplifiers (CDTAs)
Authors: S. Summart, C. Saetiaw, T. Thosdeekoraphat, C. Thongsopa
Abstract:
This article presents new current-mode oscillator circuits using CDTAs which is designed from block diagram. The proposed circuits consist of two CDTAs and two grounded capacitors. The condition of oscillation and the frequency of oscillation can be adjusted by electronic method. The circuits have high output impedance and use only grounded capacitors without any external resistor which is very appropriate to future development into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.Keywords: current-mode, quadrature oscillator, block diagram, CDTA
Procedia PDF Downloads 45319914 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate
Procedia PDF Downloads 12519913 Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States
Authors: Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Ian Struewing, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu
Abstract:
Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers.Keywords: phytoplankton, eutrophication, river, qPCR, microscopy, spatiotemporal variation
Procedia PDF Downloads 10119912 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP
Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang
Abstract:
Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species
Procedia PDF Downloads 6819911 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper
Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon
Abstract:
This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.Keywords: short-term load forecasting, power demand, neural networks, load forecasting
Procedia PDF Downloads 190