Search results for: K-means cluster analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28225

Search results for: K-means cluster analysis

27835 Transcriptional Evidence for the Involvement of MyD88 in Flagellin Recognition: Genomic Identification of Rock Bream MyD88 and Comparative Analysis

Authors: N. Umasuthan, S. D. N. K. Bathige, W. S. Thulasitha, I. Whang, J. Lee

Abstract:

The MyD88 is an evolutionarily conserved host-expressed adaptor protein that is essential for proper TLR/ IL1R immune-response signaling. A previously identified complete cDNA (1626 bp) of OfMyD88 comprised an ORF of 867 bp encoding a protein of 288 amino acids (32.9 kDa). The gDNA (3761 bp) of OfMyD88 revealed a quinquepartite genome organization composed of 5 exons (with the sizes of 310, 132, 178, 92 and 155 bp) separated by 4 introns. All the introns displayed splice signals consistent with the consensus GT/AG rule. A bipartite domain structure with two domains namely death domain (24-103) coded by 1st exon, and TIR domain (151-288) coded by last 3 exons were identified through in silico analysis. Moreover, homology modeling of these two domains revealed a similar quaternary folding nature between human and rock bream homologs. A comprehensive comparison of vertebrate MyD88 genes showed that they possess a 5-exonic structure. In this structure, the last three exons were strongly conserved, and this suggests that a rigid structure has been maintained during vertebrate evolution. A cluster of TATA box-like sequences were found 0.25 kb upstream of cDNA starting position. In addition, putative 5'-flanking region of OfMyD88 was predicted to have TFBS implicated with TLR signaling, including copies of NFB1, APRF/ STAT3, Sp1, IRF1 and 2 and Stat1/2. Using qPCR technique, a ubiquitous mRNA expression was detected in liver and blood. Furthermore, a significantly up-regulated transcriptional expression of OfMyD88 was detected in head kidney (12-24 h; >2-fold), spleen (6 h; 1.5-fold), liver (3 h; 1.9-fold) and intestine (24 h; ~2-fold) post-Fla challenge. These data suggest a crucial role for MyD88 in antibacterial immunity of teleosts.

Keywords: MyD88, innate immunity, flagellin, genomic analysis

Procedia PDF Downloads 416
27834 Growth of Droplet in Radiation-Induced Plasma of Own Vapour

Authors: P. Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: irradiation, steam, plasma, cluster formation, liquid droplets, evolution

Procedia PDF Downloads 440
27833 Study of Phenotypic Polymorphism and Detection of Genotypic Polymorphism in Menochilus sexmaculatus (Coleoptera: Insecta) Using RAPD PCR

Authors: Huma Balouch

Abstract:

Menochilus sexmaculatus commonly known as six spotted zig zag ladybird, is an aphidophagus and the most misidentified Coccinellids due to the occurrence of numerous color variants. The correct identification of Menochilus sexmaculatus and its strains is necessary to implement the use of biological control. In the present study phenotypic and genotypic polymorphism was investigated in Menochilus sexmaculatus collected from Punjab, NWFP and Sindh provinces of Pakistan. Six different morphs of the species were distinguished by analyzing its Elytral color and spot pattern and then Polymerase Chain Reaction was used to generate random amplification of polymorphic DNA (RAPD) from six different types of Menochilus sexmaculatus. Forty primers (OPA & OPC Kit) were used to perform RAPD PCR on six different types of Menochilus sexmaculatus of which, seven primers revealed different patterns related to the Menochilus sexmaculatus types. These seven primers (OPA-04, OPA-09, OPA-18, OPC-04, OPC-12, OPC-15 and OPC-18) produced 111 clear polymorphic bands and 6 scorable strain specific markers. The cluster analysis applied to RAPD data showed high polymorphism among six types and it can be concluded that these six types are six polymorphic strains of the same species.

Keywords: Menochilus sexmaculatus, aphidophagus, coccinellids, phenotypic and genotypic polymorphism, RAPD-PCR, strain specific markers

Procedia PDF Downloads 494
27832 Variation of Phenolic Compounds in Latvian Apple Juices and Their Suitability for Cider Production

Authors: Rita Riekstina-Dolge, Zanda Kruma, Fredijs Dimins, Inta Krasnova, Daina Karklina

Abstract:

Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab apples grown in Latvia were investigated. For all samples total phenolic compounds, tannins and individual phenolic compounds content were determined. The total phenolic content of different variety apple juices ranged from 650mg L-1 to 4265mg L-1. Chlorogenic acid is the predominant phenolic compound in all juice samples and ranged from 143.99mg L-1 in ‘Quaker Beauty’ apple juice to 617.66mg L-1 in ‘Kerr’ juice. Some dessert and crab apple juices have similar phenolic composition, but in several varieties such as ‘Cornelie’, ‘Hyslop’ and ‘Riku’ it was significantly higher. For cider production it is better to blend different kinds of apple juices including apples rich in high phenol content ('Rick', 'Cornelie') and also, for successful fermentation, apples rich in sugars and soluble solids content should be used in blends.

Keywords: apple juice, phenolic compounds, hierarchical cluster analysis, cider production

Procedia PDF Downloads 429
27831 A Simple User Administration View of Computing Clusters

Authors: Valeria M. Bastos, Myrian A. Costa, Matheus Ambrozio, Nelson F. F. Ebecken

Abstract:

In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented.

Keywords: big data, computing clusters, administration view, user view

Procedia PDF Downloads 330
27830 A Study to Explore the Views of Students regarding E-Learning as an Instructional Tool at University Level

Authors: Zafar Iqbal

Abstract:

This study involved students of 6th semester enrolled in a Bachelor of Computer Science Program at university level. In this era of science and technology, e-learning can be helpful for grassroots in providing them access to education tenant in less developed areas. It is a potential substitute of face-to-face teaching being used in different countries. The purpose of the study was to explore the views of students about e-learning (Facebook) as an instructional tool. By using purposive sampling technique an intact class of 30 students included both male and female were selected where e-learning was used as an instructional tool. The views of students were explored through qualitative approach by using focus group interviews. The approach was helpful to develop comprehensive understanding of students’ views towards e- learning. In addition, probing questions were also asked and recorded. Data was transcribed, generated nodes and then coded text against these nodes. For this purpose and further analysis, NVivo 10 software was used. Themes were generated and tangibly presented through cluster analysis. Findings were interesting and provide sufficient evidence that face book is a subsequent e-learning source for students of higher education. Students acknowledged it as best source of learning and it was aligned with their academic and social behavior. It was not time specific and therefore, feasible for students who work day time and can get on line access to the material when they got free time. There were some distracters (time wasters) reported by the students but can be minimized by little effort. In short, e-learning is need of the day and potential learning source for every individual who have access to internet living at any part of the globe.

Keywords: e-learning, facebook, instructional tool, higher education

Procedia PDF Downloads 374
27829 Factors Affecting Nutritional Status of Elderly People of Rural Nepal: A Community-Based Cross-Sectional Study

Authors: Man Kumar Tamang, Uday Narayan Yadav

Abstract:

Background and objectives: Every country in the world is facing a demographic challenge due to drastic growth of population over 60 years. Adequate diet and nutritional status are important determinants of health in elderly populations. This study aimed to assess the nutritional status among the elderly population and factors associated with malnutrition at the community setting in rural Nepal. Methods: This is a community-based cross-sectional study among elderly of age 60 years or above in the three randomly selected VDCs of Morang district in eastern Nepal, between August and November, 2016. A multi stage cluster sampling was adopted with sample size of 345 of which 339 participated in the study. Nutritional status was assessed by MNA tool and associated socio-economic, demographic, psychological and nutritional factors were checked by binary logistic regression analysis. Results: Among 339 participants, 24.8% were found to be within normal nutritional status, 49.6% were at risk of malnutrition and 24.8% were malnourished. Independent factors associated with malnutrition status among the elderly people after controlling the cofounders in the bivariate analysis were: elderly who were malnourished were those who belonged to backward caste according to traditional Hindu caste system [OR=2.69, 95% CI: 1.17-6.21), being unemployed (OR=3.23, 95% CI: 1.63-6.41),who experienced any mistreatment from caregivers (OR=4.05, 95% CI: 1.90-8.60), being not involved in physical activity (OR=4.67, 95% CI: 1.87-11.66) and those taking medication for any co-morbidities. Conclusion: Many socio-economic, psychological and physiological factors affect nutritional status in our sample population and these issues need to be addressed for bringing improvement in elderly nutrition and health status.

Keywords: elderly, eastern Nepal, malnutrition, nutritional status

Procedia PDF Downloads 298
27828 Online Classroom Instruction and Collaborative Learning: Problems and Prospects Among Undergraduate Students of Obafemi Awolowo University, Ile-Ife, Nigeria

Authors: Bello Theodora O., Animola Odunayo V., Owoade Johnson T.

Abstract:

With the advent of Covid-19, online classroom instruction became a very important mode of instruction delivery during which learners were engaged in both collaborative and online interactive learning process, but along with it are challenges as well as its deliverables. This study therefore investigated the various online platform used by the students for learning among fresh undergraduate students of Obafemi Awolowo University, Ile-Ife, Osun Sate. It also assessed the student’s perception towards online learning in the university and examined the influence of collaborative learning among the students. Lastly, it examined the problems that are associated with collaborative online learning instruction in the university. These were with a view to providing empirical information on problems and prospects of online classroom instruction among fresh undergraduate physical science students of Obafemi Awolowo University, Ile-Ife. The study employed a descriptive survey research technique. The population comprised all the fresh undergraduates in physical science departments of Obafemi Awolowo University, Ile-Ife. The sample consisted two hundred freshmen in physical science departments of Obafemi Awolowo University, Ile-Ife, who were selected using simple random techniques. During the selection, a questionnaire was used to collect data from the respondents. The data were analyzed using appropriate descriptive of frequency, simple percentage, and mean. Results showed that Google Meet 149(74.5%), Telegram 120(60.0%), and Google Classroom 143(71.5%), are the prominent online classroom instruction used by the students in Obafemi Awolowo University, Ile-Ife. The results also showed that the freshmen’s perception towards online classroom instruction in Obafemi Awolowo University, Ile-Ife is low with cluster mean of 2.97. It further revealed that collaborative learning enhances the learning ability of below average learners more than that of the above average and average students (73.6%). Finally, the result showed that they are affirmative of the problems associated with online classroom instruction in Obafemi Awolowo University, Ile-Ife with cluster mean of 3.01. The result concluded that most Online platform used by the fresher’s students in Obafemi Awolowo University, Ile-Ife are Google Meet, Telegram and Google Classroom. The students have negatives perception towards online classroom instruction and the students are affirmative of the problems associated with online classroom instruction among physical science freshmen in Obafemi Awolowo University, Ile-Ife.

Keywords: online, instruction, freshmen, physical science, collaborative

Procedia PDF Downloads 64
27827 Identification of Watershed Landscape Character Types in Middle Yangtze River within Wuhan Metropolitan Area

Authors: Huijie Wang, Bin Zhang

Abstract:

In China, the middle reaches of the Yangtze River are well-developed, boasting a wealth of different types of watershed landscape. In this regard, landscape character assessment (LCA) can serve as a basis for protection, management and planning of trans-regional watershed landscape types. For this study, we chose the middle reaches of the Yangtze River in Wuhan metropolitan area as our study site, wherein the water system consists of rich variety in landscape types. We analyzed trans-regional data to cluster and identify types of landscape characteristics at two levels. 55 basins were analyzed as variables with topography, land cover and river system features in order to identify the watershed landscape character types. For watershed landscape, drainage density and degree of curvature were specified as special variables to directly reflect the regional differences of river system features. Then, we used the principal component analysis (PCA) method and hierarchical clustering algorithm based on the geographic information system (GIS) and statistical products and services solution (SPSS) to obtain results for clusters of watershed landscape which were divided into 8 characteristic groups. These groups highlighted watershed landscape characteristics of different river systems as well as key landscape characteristics that can serve as a basis for targeted protection of watershed landscape characteristics, thus helping to rationally develop multi-value landscape resources and promote coordinated development of trans-regions.

Keywords: GIS, hierarchical clustering, landscape character, landscape typology, principal component analysis, watershed

Procedia PDF Downloads 228
27826 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
27825 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
27824 Volatility Switching between Two Regimes

Authors: Josip Visković, Josip Arnerić, Ante Rozga

Abstract:

Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modelling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.

Keywords: central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities

Procedia PDF Downloads 226
27823 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: DSEP, fuzzy logic, energy model, WSN

Procedia PDF Downloads 207
27822 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology

Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan

Abstract:

In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.  

Keywords: fluid dynamics, prototype design, natural ventilation, simulations, water table apparatus, wind incidence angles

Procedia PDF Downloads 229
27821 Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh

Authors: M. F. Miah, K. M. A. Zinnah, M. J. Raihan, H. Ali, M. N. Naser

Abstract:

As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, Monopterus cuchia at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively.

Keywords: genetic diversity, Monopterus cuchia, population, RAPD, Bangladesh

Procedia PDF Downloads 505
27820 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 278
27819 Eco-Environmental Vulnerability Evaluation in Mountain Regions Using Remote Sensing and Geographical Information System: A Case Study of Pasol Gad Watershed of Garhwal Himalaya, India

Authors: Suresh Kumar Bandooni, Mirana Laishram

Abstract:

The Mid Himalaya of Garhwal Himalaya in Uttarakhand (India) has a complex Physiographic features withdiversified climatic conditions and therefore it is suspect to environmental vulnerability. Thenatural disasters and also anthropogenic activities accelerate the rate of environmental vulnerability. To analyse the environmental vulnerability, we have used geoinformatics technologies and numerical models and it is adoptedby using Spatial Principal Component Analysis (SPCA). The model consist of many factors such as slope, landuse/landcover, soil, forest fire risk, landslide susceptibility zone, human population density and vegetation index. From this model, the environmental vulnerability integrated index (EVSI) is calculated for Pasol Gad Watershed of Garhwal Himalaya for the years 1987, 2000, and 2013 and the Vulnerability is classified into five levelsi.e. Very low, low, medium, high and very highby means of cluster principle. The resultsforeco-environmental vulnerability distribution in study area shows that medium, high and very high levels are dominating in the area and it is mainly caused by the anthropogenic activities and natural disasters. Therefore, proper management forconservation of resources is utmost necessity of present century. It is strongly believed that participation at community level along with social worker, institutions and Non-governmental organization (NGOs) have become a must to conserve and protect the environment.

Keywords: eco-environment vulnerability, spatial principal component analysis, remote sensing, geographic information system, institutions, Himalaya

Procedia PDF Downloads 262
27818 The Use of Telecare in the Re-design of Overnight Supports for People with Learning Disabilities: Implementing a Cluster-based Approach in North Ayrshire

Authors: Carly Nesvat, Dominic Jarrett, Colin Thomson, Wilma Coltart, Thelma Bowers, Jan Thomson

Abstract:

Introduction: Within Scotland, the Same As You strategy committed to moving people with learning disabilities out of long-stay hospital accommodation into homes in the community. Much of the focus of this movement was on the placement of people within individual homes. In order to achieve this, potentially excessive supports were put in place which created dependence, and carried significant ongoing cost primarily for local authorities. The greater focus on empowerment and community participation which has been evident in more recent learning disability strategy, along with the financial pressures being experienced across the public sector, created an imperative to re-examine that provision, particularly in relation to the use of expensive sleepover supports to individuals, and the potential for this to be appropriately scaled back through the use of telecare. Method: As part of a broader programme of redesigning overnight supports within North Ayrshire, a cluster of individuals living in close proximity were identified, who were in receipt of overnight supports, but who were identified as having the capacity to potentially benefit from their removal. In their place, a responder service was established (an individual staying overnight in a nearby service user’s home), and a variety of telecare solutions were placed within individual’s homes. Active and passive technology was connected to an Alarm Receiving Centre, which would alert the local responder service when necessary. Individuals and their families were prepared for the change, and continued to be informed about progress with the pilot. Results: 4 individuals, 2 of whom shared a tenancy, had their sleepover supports removed as part of the pilot. Extensive data collection in relation to alarm activation was combined with feedback from the 4 individuals, their families, and staff involved in their support. Varying perspectives emerged within the feedback. 3 of the individuals were clearly described as benefitting from the change, and the greater sense of independence it brought, while more concerns were evident in relation to the fourth. Some family members expressed a need for greater preparation in relation to the change and ongoing information provision. Some support staff also expressed a need for more information, to help them understand the new support arrangements for an individual, as well as noting concerns in relation to the outcomes for one participant. Conclusion: Developing a telecare response in relation to a cluster of individuals was facilitated by them all being supported by the same care provider. The number of similar clusters of individuals being identified within North Ayrshire is limited. Developing other solutions such as a response service for redesign will potentially require greater collaboration between different providers of home support, as well as continuing to explore the full range of telecare, including digital options. The pilot has highlighted the need for effective preparatory and ongoing engagement with staff and families, as well as the challenges which can accompany making changes to long-standing packages of support.

Keywords: challenges, change, engagement, telecare

Procedia PDF Downloads 177
27817 Experts' Perception of Secondary Education Quality Management Challenges in Ethiopia

Authors: Aklilu Alemu, Tak Cheung Chan

Abstract:

Following the intensification of secondary education in the developing world, the attention of Ethiopia has currently shifted to its quality education and its management. This study is aimed to explore experts’ perceptions of quality management challenges in secondary education in Ethiopia. The researchers employed a case study design recruiting participating supervisors from the Ministry of Education, region, zone, wereda, and cluster by using a purposeful sampling technique. Twenty-six interviewees took part in this study. The researchers employed NVivo 8 versions together with a thematic analysis process to analyze the data. This study revealed that major problems that affected quality management practices in Ethiopia were: lack of qualified experts at all levels; lack of accountability in every echelon; the changing nature of teacher education; the ineffectiveness of teacher-licensing programs; and lack of educational budget and the problem of utilizing this limited budget. The study concluded that the experts at different levels were not genuinely fulfilling their roles and responsibilities. Therefore, the Ministry of Finance and Economic Development, together with the concerned parties, needs to reconsider budget allocation for secondary education.

Keywords: education quality, Ethiopia, quality challenge, quality management, secondary education

Procedia PDF Downloads 216
27816 Volatile Compounds and Sensory Characteristics of Herbal Teas and Bush Tea Blends with Selected Herbal Teas South Africa

Authors: Florence Malongane, Lyndy J. McGaw, Legesse K. Debusho, Fhatuwani N. Mudau

Abstract:

Rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren), honeybush (Cyclopia Vent. species), bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) are traditionally consumed herbal teas in South Africa. The volatile and sensory qualities of rooibos and honeybush tea have previously been described although there is a dearth of information regarding the sensory attributes and volatile compounds analysis of special tea and bush tea. The objective of this study was to describe the sensory properties, compare the differences in descriptive sensory analysis (DSA) and volatile compounds of bush tea, special, rooibos, honeybush and the blend of bush tea with special, honeybush and rooibos in a 1:1 ratio and subsequently to determine the influence of blending bush tea with other herbal teas. DSA was used to assess the sensory attributes of the teas while gas chromatography–mass spectrometry (GC-MS) was used to quantitatively determine the volatile components of the teas. Rooibos tea and honeybush tea had an overall sweet-caramel, honey-sweet, perfume floral and woody aroma with slight astringency, consistent with the taste and aftertaste attributes. In contrast, bush tea and special tea depicted green-cut grass, dry green herbal, cooked spinach aroma as well as taste and aftertaste characteristics. GC-MS analyses revealed that the seven tea samples had similar major volatiles, including 2-furanmethanol, 2-methoxy-4-vinylphenol, acetic acid, D-limonene terpene and phytol. Cluster analysis revealed that the sweet and woody flavour of honeybush and rooibos were ascribed to the presence of á-myrcene, phenylethyl alcohol, phytol and vanillin. The bitter, medicinal flavour attributes of special tea were attributed to (-)-carvone. Blending of bush tea with rooibos and honeybush tea toned down its aversive flavour components, typically the bitter, green-cut grass and herbal properties, thus minimising the possibility of consumer aversion.

Keywords: bush tea, rooibos tea, honeybush tea, sensory, volatile compounds

Procedia PDF Downloads 181
27815 Bacterial Diversity in Human Intestinal Microbiota and Correlations with Nutritional Behavior, Physiology, Xenobiotics Intake and Antimicrobial Resistance in Obese, Overweight and Eutrophic Individuals

Authors: Thais O. de Paula, Marjorie R. A. Sarmiento, Francis M. Borges, Alessandra B. Ferreira-Machado, Juliana A. Resende, Dioneia E. Cesar, Vania L. Silva, Claudio G. Diniz

Abstract:

Obesity is currently a worldwide public health threat, being considered a pandemic multifactorial disease related to the human gut microbiota (GM). Add to that GM is considered an important reservoir of antimicrobial resistance genes (ARG) and little is known on GM and ARG in obesity, considering the altered physiology and xenobiotics intake. As regional and social behavior may play important roles in GM modulation, and most of the studies are based on small sample size and various methodological approaches resulting in difficulties for data comparisons, this study was focused on the investigation of GM bacterial diversity in obese (OB), overweight (OW) and eutrophic individuals (ET) considering their nutritional, clinical and social characteristics; and comparative screening of AGR related to their physiology and xenobiotics intake. Microbial community was accessed by FISH considering phyla as a taxonomic level, and PCR-DGGE followed by dendrograms evaluation (UPGMA method) from fecal metagenome of 72 volunteers classified according to their body mass index (BMI). Nutritional, clinical, social parameters and xenobiotics intake were recorded for correlation analysis. The fecal metagenome was also used as template for PCR targeting 59 different ARG. Overall, 62% of OB were hypertensive, and 12% or 4% were, regarding the OW and ET individuals. Most of the OB were rated as low income (80%). Lower relative bacterial densities were observed in the OB compared to ET for almost all studied taxa (p < 0.05) with Firmicutes/Bacteroidetes ratio increased in the OB group. OW individuals showed a bacterial density representative of GM more likely to the OB. All the participants were clustered in 3 different groups based on the PCR-DGGE fingerprint patterns (C1, C2, C3), being OB mostly grouped in C1 (83.3%) and ET mostly grouped in C3 (50%). The cluster C2 showed to be transitional. Among 27 ARG detected, a cluster of 17 was observed in all groups suggesting a common core. In general, ARG were observed mostly within OB individuals followed by OW and ET. The ratio between ARG and bacterial groups may suggest that AGR were more related to enterobacteria. Positive correlations were observed between ARG and BMI, calories and xenobiotics intake (especially use of sweeteners). As with nutritional and clinical characteristics, our data may suggest that GM of OW individuals behave in a heterogeneous pattern, occasionally more likely to the OB or to the ET. Regardless the regional and social behaviors of our population, the methodological approaches in this study were complementary and confirmatory. The imbalance of GM over the health-disease interface in obesity is a matter of fact, but its influence in host's physiology is still to be clearly elucidated to help understanding the multifactorial etiology of obesity. Although the results are in agreement with observations that GM is altered in obesity, the altered physiology in OB individuals seems to be also associated to the increased xenobiotics intake and may interfere with GM towards antimicrobial resistance, as observed by the fecal metagenome and ARG screening. Support: FAPEMIG, CNPQ, CAPES, PPGCBIO/UFJF.

Keywords: antimicrobial resistance, bacterial diversity, gut microbiota, obesity

Procedia PDF Downloads 169
27814 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 104
27813 Anthropometric Profile as a Factor of Impact on Employee Productivity in Manufacturing Industry of Tijuana, Mexico

Authors: J. A. López, J. E. Olguín, C. W. Camargo, G. A. Quijano, R. Martínez

Abstract:

This paper presents an anthropometric study conducted to 300 employees in a maquiladora industry that belongs to the cluster of medical products as part of a research project to pretend simulate workplace conditions under which operators conduct their activities. This project is relevant because traditionally performed a study to design ergonomic workspaces according to anthropometric profile of users, however, this paper demonstrates the importance of making decisions when the infrastructure cannot be adapted for economic whichever put emphasis on user activity.

Keywords: anthropometry, biomechanics, design, ergonomics, productivity

Procedia PDF Downloads 456
27812 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds

Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya

Abstract:

Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.

Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS

Procedia PDF Downloads 504
27811 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.

Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors

Procedia PDF Downloads 393
27810 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India

Authors: Vinay C. Doranalu, Amba Shetty

Abstract:

In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.

Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric

Procedia PDF Downloads 294
27809 Physical Activity and Nutrition Intervention for Singaporean Women Aged 50 Years and Above: A Study Protocol for a Community Based Randomised Controlled Trial

Authors: Elaine Yee Sing Wong, Jonine Jancey, Andy H. Lee, Anthony P. James

Abstract:

Singapore has a rapidly aging population, where the majority of older women aged 50 years and above, are physically inactive and have unhealthy dietary habits, placing them at ‘high risk’ of non-communicable diseases. Given the multiplicity of less than optimal dietary habits and high levels of physical inactivity among Singaporean women, it is imperative to develop appropriate lifestyle interventions at recreational centres to enhance both their physical and nutritional knowledge, as well as provide them with the opportunity to develop skills to support behaviour change. To the best of our knowledge, this proposed study is the first physical activity and nutrition cluster randomised controlled trial conducted in Singapore for older women. Findings from this study may provide insights and recommendations for policy makers and key stakeholders to create new healthy living, recreational centres with supportive environments. This 6-month community-based cluster randomised controlled trial will involve the implementation and evaluation of physical activity and nutrition program for community dwelling Singaporean women, who currently attend recreational centres to promote social leisure activities in their local neighbourhood. The intervention will include dietary education and counselling sessions, physical activity classes, and telephone contact by certified fitness instructors and qualified nutritionists. Social Cognitive Theory with Motivational Interviewing will inform the development of strategies to support health behaviour change. Sixty recreational centres located in Singapore will be randomly selected from five major geographical districts and randomly allocated to the intervention (n=30) or control (n=30) cluster. A sample of 600 (intervention n=300; control n=300) women aged 50 years and above will then be recruited from these recreational centres. The control clusters will only undergo pre and post data collection and will not receive the intervention. It is hypothesised that by the end of the intervention, the intervention group participants (n = 300) compared to the control group (n = 300), will show significant improvements in the following variables: lipid profile, body mass index, physical activity and dietary behaviour, anthropometry, mental and physical health. Data collection will be examined and compared via the Statistical Package for the Social Science version 23. Descriptive and summary statistics will be used to quantify participants’ characteristics and outcome variables. Multi-variable mixed regression analyses will be used to confirm the effects of the proposed health intervention, taking into account the repeated measures and the clustering of the observations. The research protocol was approved by the Curtin University Human Research Ethics Committee (approval number: HRE2016-0366). The study has been registered with the Australian and New Zealand Clinical Trial Registry (12617001022358).

Keywords: community based, healthy aging, intervention, nutrition, older women, physical activity

Procedia PDF Downloads 177
27808 The Nonlinear Optical Properties Analysis of AlPc-Cl Organic Compound

Authors: M. Benhaliliba, A. Ben Ahmed, C.E. Benouis, A.Ayeshamariam

Abstract:

The properties of nonlinear optical NLOs are examined, and the results confirm the 2.19 eV HOMO-LUMO mismatch. In the Al-Pc cluster, certain functional bond lengths and bond angles have been observed. The Quantum chemical method (DFT and TD-DFT) and Vibrational spectra properties of AlPc are studied. X-ray pattern reveals the crystalline structure along with the (242) orientation of the AlPc organic thin layer. UV-Vis shows the frequency selective behavior of the device. The absorbance of such layer exhibits a high value within the UV range and two consecutive peaks within visible range. Spin coating is used to make an organic diode based on the Aluminium-phthalocynanine (AlPc-Cl) molecule. Under dark and light conditions, electrical characterization of Ag/AlPc/Si/Au is obtained. The diode's high rectifying capability (about 1x104) is subsequently discovered. While the height barrier is constant and saturation current is greatly reliant on light, the ideality factor of such a diode increases to 6.9 which confirms the non-ideality of such a device. The Cheung-Cheung technique is employed to further the investigation and gain additional data such as series resistance and barrier height.

Keywords: AlPc-Cl organic material, nonlinear optic, optical filter, diode

Procedia PDF Downloads 137
27807 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 229
27806 Evaluation of Genetic Diversity in Iranian Native Silkworm Bombyx mori Using RAPD (Random Amplification of Polymorphic DNA) Molecular Marker

Authors: Rouhollah Radjabi, Mojtaba Zarei, Elham Sanatgar, Hossein Shouhani

Abstract:

RAPD molecular markers in order to discrimination of the Iranian native Bombyx mori silkworm breeds were used. DNA extraction using phenol - chloroform was and the qualitative and quantitative measurements of extracted DNA and its dilution, the obtained bands on agarose gel 1.5 percent were marked and analyzed. Results showed that the bands are observed between 250-2500 bp and most bands have been observed as Gilani-orange, the lowest bands observed are Khorasani-lemon. Primer 3 with 100% polymorphism with the highest polymorphism and primer 2 with 61.5 polymorphism had the lowest percentage of polymorphism. Cluster analysis of races and placed them in three main groups, races Gilani - orange, Baghdad and Khorasani -pink if the first group, camel's thorn, Herati - yellow race was alone in the second group and Khorasani – lemon was alone in the third group. The greatest similarity between the races, between Khorasani- pink and Baghdad (0.64). RAPD markers have been determined different silkworm races based on various morphological or economic characteristics except geographic origin.

Keywords: silkworm, molecular marker, RAPD, Iran

Procedia PDF Downloads 431