Search results for: Giuseppe Carlo Marano
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 449

Search results for: Giuseppe Carlo Marano

59 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area

Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma

Abstract:

The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.

Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty

Procedia PDF Downloads 89
58 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach

Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong

Abstract:

Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.

Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach

Procedia PDF Downloads 394
57 SiO2-Ag+Chlorex vs SilverSulfaDiazine: An 'in vitro' and 'in vivo' Silver Challenge

Authors: Roberto Cassino, Valeria Dissette, Carlo Alberto Bignozzi, Daniele Pazzi

Abstract:

Background and Aims: The aim of this work was to investigate, both ‘in vitro’ and ‘in vivo’, if the new SCX technology (SiO2-Ag+Chlorex) can easily defeat infections and it is really more effective than SSD (SilverSulfaDiazine). ‘In vitro’ methods: we tested ‘in vitro’ the effectiveness of both silver materials using a pool of 5 strains: Pseudomonas Aeruginosa, Staphylococcus aureus, Escherichia Coli, Enterococcus hirae and Candida Albicans. 100 µl of this pool have been seeded on Petri dishes and kept for 24 hours in incubation at 37 C°. ‘In vivo’ methods: we enrolled patients with multiple infectious chronic wounds (according with cutting & harding criteria for infection); after a qualitative evaluation of the wounds bacterial population, taking a sample by plug, we included in the study 6 patients for a total of 10 wounds, infected by one or more of the microorganisms used for the ‘in vitro’ test. The protocol consisted of a treatment with a spray powder of SSD every 48 hours for 14 days; in case of worsening we should have to start a new treatment with a spray powder containing silicon dioxide, ionic silver and chlorexidine (SiO2-Ag+Chlorex) every 48 hours for 14 days. We evaluated the number of clinical signs of infection and the disappearance or not of the wound edge erithema. ‘In vitro’ results: SSD demonstrated a wide zone of inhibition within 24 hours, but after 5 days there was no more signs of inhibition; on the contrary SCX had a good inhibition ring that lasted more than 5 days. ‘In vivo’ results: all wounds treated with SSD got worse; the signs of infection increased and the wound edge erithema did not disappear. According with the protocol, we treated then all wounds with SCX and they all improved within the period of observation with complete disappearance of clinical signs of infection and no more wound edge erithema. Conclusions: the study demonstrated the effectiveness of SiO2-Ag+Chlorex, especially in terms of long lasting antimicrobial action. We had the same results ‘in vitro’, so that there has been a perfect correspondence between the laboratory outcomes and the clinical ones.

Keywords: chronic wounds, infections, ionic silver, SSD

Procedia PDF Downloads 332
56 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore

Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska

Abstract:

— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.

Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis

Procedia PDF Downloads 23
55 Trip Reduction in Turbo Machinery

Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto

Abstract:

Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBT

Keywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start

Procedia PDF Downloads 74
54 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging

Procedia PDF Downloads 76
53 Organ Dose Calculator for Fetus Undergoing Computed Tomography

Authors: Choonsik Lee, Les Folio

Abstract:

Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.

Keywords: computed tomography, fetal dose, pregnant women, radiation dose

Procedia PDF Downloads 139
52 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 95
51 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 257
50 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 392
49 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers

Authors: Shreyas Srinivas Rangan, Jurgis Porins

Abstract:

The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.

Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers

Procedia PDF Downloads 68
48 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 75
47 Multifunctionality of Cover Crops in South Texas: Looking at Multiple Benefits of Cover Cropping on Small Farms in a Subtropical Climate

Authors: Savannah Rugg, Carlo Moreno, Pushpa Soti, Alexis Racelis

Abstract:

Situated in deep South Texas, the Lower Rio Grande Valley (LRGV) is considered one the most productive agricultural regions in the southern US. With the highest concentration of organic farms in the state (Hidalgo county), the LRGV has a strong potential to be leaders in sustainable agriculture. Finding management practices that comply with organic certification and increase the health of the agroecosytem and the farmers working the land is increasingly pertinent. Cover cropping, or the intentional planting of non-cash crop vegetation, can serve multiple functions in an agroecosystem by decreasing environmental pollutants that originate from the agroecosystem, reducing inputs needed for crop production, and potentially decreasing on-farm costs for farmers—overall increasing the sustainability of the farm. Use of cover crops on otherwise fallow lands have shown to enhance ecosystem services such as: attracting native beneficial insects (pollinators), increase nutrient availability in topsoil, prevent nutrient leaching, increase soil organic matter, and reduces soil erosion. In this study, four cover crops (Lablab, Sudan Grass, Sunn Hemp, and Pearl Millet) were analyzed in the subtropical region of south Texas to see how their multiple functions enhance ecosystem services. The four cover crops were assessed to see their potential to harbor native insects, their potential to increase soil nitrogen, to increase soil organic matter, and to suppress weeds. The preliminary results suggest that these subtropical varieties of cover crops have potential to enhance ecosystem services on agricultural land in the RGV by increasing soil organic matter (in all varieties), increasing nitrogen in topsoil (Lablab, Sunn Hemp), and reducing weeds (Sudan Grass).

Keywords: cover crops, ecosystem services, subtropical agriculture, sustainable agriculture

Procedia PDF Downloads 295
46 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine

Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot

Abstract:

Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.

Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns

Procedia PDF Downloads 149
45 A Study of Female Casino Dealers' Job Stress and Job Satisfaction: The Case of Macau

Authors: Xinrong Zong, Tao Zhang

Abstract:

Macau is known as the Oriental Monte Carlo and its economy depends on gambling heavily. The dealer is the key position of the gambling industry, at the end of the fourth quarter of 2015, there were over 24,000 dealers among the 56,000 full-time employees in gambling industry. More than half of dealers were female. The dealer is also called 'Croupier', the main responsibilities of them are shuffling, dealing, processing chips, rolling dice game and inspecting play. Due to the limited land and small population of Macao, the government has not allowed hiring foreign domestic dealers since Macao developed temporary gambling industry. Therefore, local dealers enjoy special advantages but also bear the high stresses from work. From the middle of last year, with the reduced income of gambling, and the decline of mainland gamblers as well as VIP lounges, the working time of dealers increased greatly. Thus, many problems occurred in this condition, such as the rise of working pressures, psychological pressures and family-responsibility pressures, which may affect job satisfaction as well. Because of the less research of dealer satisfaction, and a lack of standing on feminine perspective to analyze female dealers, this study will focus on investigating the relationship between working pressure and job satisfaction from feminine view. Several issues will be discussed specifically: firstly, to understand current situation of the working pressures and job satisfactions of female dealers in different ages; secondly, to research if there is any relevance between working pressures and job satisfactions of female dealers in different ages; thirdly, to find out the relationship between dealers' working pressures and job satisfactions in different ages. This paper combined qualitative approach with quantitative approach selected samples by convenient sampling. The research showed the female dealers from diverse ages have different kinds of working pressures; second, job satisfactions of the female dealers in different ages are dissimilar; moreover, there is negative correlation between working pressure and job satisfaction of female dealer in different ages' groups; last but not the least, working pressure has a significant negative impact on job satisfaction. The research result will provide a reference value for the Macau gambling business. It is a pattern to improve dealers' working environment, to increase employees' job satisfaction, as well as to offer tourists a better service, which can help to attract more and more visitors from a good image of Macau gaming and tourism.

Keywords: female dealers, job satisfaction, working pressure, Macau

Procedia PDF Downloads 296
44 Revision of Arthroplasty in Rheumatoid and Osteoarthritis: Methotrexate and Radiographic Lucency in RA Patients

Authors: Mike T. Wei, Douglas N. Mintz, Lisa A. Mandl, Arielle W. Fein, Jayme C. Burket, Yuo-Yu Lee, Wei-Ti Huang, Vivian P. Bykerk, Mark P. Figgie, Edward F. Di Carlo, Bruce N. Cronstein, Susan M. Goodman

Abstract:

Background/Purpose: Rheumatoid arthritis (RA) patients have excellent total hip arthroplasty (THA) survival, and methotrexate (MTX), an anti-inflammatory disease modifying drug which may affect bone reabsorption, may play a role. The purpose of this study is to determine the diagnosis leading to revision THA (rTHA) in RA patients and to assess the association of radiographic lucency with MTX use. Methods: All patients with validated diagnosis of RA in the institution’s THA registry undergoing rTHA from May 2007 - February 2011 were eligible. Diagnosis leading to rTHA and medication use was determined by chart review. Osteolysis was evaluated on available radiographs by measuring maximum lucency in each Gruen zone. Differences within RA patients with/without MTX in osteolysis, demographics, and medications were assessed with chi-squared, Fisher's exact tests or Mann-Whitney U tests as appropriate. The error rate for multiple comparisons of lucency in the different Gruen zones was corrected via false discovery rate methods. A secondary analysis was performed to determine differences in diagnoses leading to revision between RA and matched OA controls (2:1 match by sex age +/- 5 years). OA exclusion criteria included presence of rheumatic diseases, use of MTX, and lack of records. Results: 51 RA rTHA were identified and compared with 103 OA. Mean age for RA was 57.7 v 59.4 years for OA (p = 0.240). 82.4% RA were female v 83.5% OA (p = 0.859). RA had lower BMI than OA (25.5 v 28.2; p = 0.166). There was no difference in diagnosis leading to rTHA, including infection (RA 3.9 v OA 6.8%; p = 0.719) or dislocation (RA 23.5 v OA 23.3%; p = 0.975). There was no significant difference in the length of time the implant was in before revision: RA 11.0 v OA 8.8 years (p = 0.060). Among RA with/without MTX, there was no difference in use of biologics (30.0 v 43.3%, p = 0.283), steroids (47.6 v 50.0%, p = 0.867) or bisphosphonates (23.8 v 33.3%, p = 0.543). There was no difference in rTHA diagnosis with/without MTX, including loosening (52.4 v 56.7%, p = 0.762). There was no significant difference in lucencies with MTX use in any Gruen zone. Patients with MTX had femoral stem subsidence of 3.7mm v no subsidence without MTX (p = 0.006). Conclusion: There was no difference in the diagnosis leading to rTHR in RA and OA, although RA trended longer prior to rTHA. In this small retrospective study, there were no significant differences associated with MTX exposure or radiographic lucency among RA patients. The significance of subsidence is not clear. Further study of arthroplasty survival in RA patients is warranted.

Keywords: hip arthroplasty, methotrexate, revision arthroplasty, rheumatoid arthritis

Procedia PDF Downloads 246
43 Simulation of Colombian Exchange Rate to Cover the Exchange Risk Using Financial Options Like Hedge Strategy

Authors: Natalia M. Acevedo, Luis M. Jimenez, Erick Lambis

Abstract:

Imperfections in the capital market are used to argue the relevance of the corporate risk management function. With corporate hedge, the value of the company is increased by reducing the volatility of the expected cash flow and making it possible to face a lower bankruptcy costs and financial difficulties, without sacrificing tax advantages for debt financing. With the propose to avoid exchange rate troubles over cash flows of Colombian exporting firms, this dissertation uses financial options, over exchange rate between Peso and Dollar, for realizing a financial hedge. In this study, a strategy of hedge is designed for an exporting company in Colombia with the objective of preventing fluctuations because, if the exchange rate down, the number of Colombian pesos that obtains the company by exports, is less than agreed. The exchange rate of Colombia is measured by the TRM (Representative Market Rate), representing the number of Colombian pesos for an American dollar. First, the TMR is modelled through the Geometric Brownian Motion, with this, the project price is simulated using Montecarlo simulations and finding the mean of TRM for three, six and twelve months. For financial hedging, currency options were used. The 6-month projection was covered with financial options on European-type currency with a strike price of $ 2,780.47 for each month; this value corresponds to the last value of the historical TRM. In the compensation of the options in each month, the price paid for the premium, calculated with the Black-Scholes method for currency options, was considered. Finally, with the modeling of prices and the Monte Carlo simulation, the effect of the exchange hedging with options on the exporting company was determined, this by means of the unit price estimate to which the dollars in the scenario without coverage were changed and scenario with coverage. After using the scenarios: is determinate that the TRM will have a bull trend and the exporting firm will be affected positively because they will get more pesos for each dollar. The results show that the financial options manage to reduce the exchange risk. The expected value with coverage is approximate to the expected value without coverage, but the 5% percentile with coverage is greater than without coverage. The foregoing indicates that in the worst scenarios the exporting companies will obtain better prices for the sale of the currencies if they cover.

Keywords: currency hedging, futures, geometric Brownian motion, options

Procedia PDF Downloads 127
42 Russian pipeline natural gas export strategy under uncertainty

Authors: Koryukaeva Ksenia, Jinfeng Sun

Abstract:

Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.

Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy

Procedia PDF Downloads 59
41 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods

Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal

Abstract:

Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.

Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation

Procedia PDF Downloads 402
40 A Heteroskedasticity Robust Test for Contemporaneous Correlation in Dynamic Panel Data Models

Authors: Andreea Halunga, Chris D. Orme, Takashi Yamagata

Abstract:

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel-data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: (i) either N is fixed as T→∞; or, (ii) N²/T→0, as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would provide an adequate guide to finite sample performance when T/N is "small". Because of this, we also propose and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.

Keywords: cross-section correlation, time-series heteroskedasticity, dynamic panel data, heteroskedasticity robust Breusch-Pagan test

Procedia PDF Downloads 430
39 Energy Storage Modelling for Power System Reliability and Environmental Compliance

Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari

Abstract:

Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.

Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation

Procedia PDF Downloads 130
38 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model

Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung

Abstract:

The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.

Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation

Procedia PDF Downloads 168
37 Syngas From Polypropylene Gasification in a Fluidized Bed

Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo

Abstract:

In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.

Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle

Procedia PDF Downloads 26
36 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions

Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini

Abstract:

This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.

Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing

Procedia PDF Downloads 145
35 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment

Authors: Habib Abida, Noura Dahri

Abstract:

Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.

Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia

Procedia PDF Downloads 107
34 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 60
33 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 224
32 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 339
31 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling

Authors: Moustafa Osman Mohammed

Abstract:

The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.

Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology

Procedia PDF Downloads 67
30 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294