Search results for: EB thermal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7032

Search results for: EB thermal processing

2892 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 176
2891 Android Graphics System: Study of Dual-Software VSync Synchronization Architecture and Optimization

Authors: Prafulla Kumar Choubey, Krishna Kishor Jha, S. B. Vaisakh Punnekkattu Chirayil

Abstract:

In Graphics-display subsystem, frame buffers are shared between producer i.e. content rendering and consumer i.e. display. If a common buffer is operated by both producer and consumer simultaneously, their processing rates mismatch can cause tearing effect in displayed content. Therefore, Android OS employs triple buffered system, taking in to account an additional composition stage. Three stages-rendering, composition and display refresh, operate synchronously on three different buffers, which is achieved by using vsync pulses. This synchronization, however, brings in to the pipeline an additional latency of up to 26ms. The present study details about the existing synchronization mechanism of android graphics-display pipeline and discusses a new adaptive architecture which reduces the wait time to 5ms-16ms in all the use-cases. The proposed method uses two adaptive software vsyncs (PLL) for achieving the same result.

Keywords: Android graphics system, vertical synchronization, atrace, adaptive system

Procedia PDF Downloads 316
2890 Comparison of Heuristic Methods for Solving Traveling Salesman Problem

Authors: Regita P. Permata, Ulfa S. Nuraini

Abstract:

Traveling Salesman Problem (TSP) is the most studied problem in combinatorial optimization. In simple language, TSP can be described as a problem of finding a minimum distance tour to a city, starting and ending in the same city, and exactly visiting another city. In product distribution, companies often get problems in determining the minimum distance that affects the time allocation. In this research, we aim to apply TSP heuristic methods to simulate nodes as city coordinates in product distribution. The heuristics used are sub tour reversal, nearest neighbor, farthest insertion, cheapest insertion, nearest insertion, and arbitrary insertion. We have done simulation nodes using Euclidean distances to compare the number of cities and processing time, thus we get optimum heuristic method. The results show that the optimum heuristic methods are farthest insertion and nearest insertion. These two methods can be recommended to solve product distribution problems in certain companies.

Keywords: Euclidean, heuristics, simulation, TSP

Procedia PDF Downloads 129
2889 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 348
2888 Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation

Authors: Daniyar Bossinov

Abstract:

This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment.

Keywords: non-isothermal laminar flow, waxy crude oil, stagnant zone, yield stress

Procedia PDF Downloads 31
2887 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm

Procedia PDF Downloads 414
2886 Microbiological Properties and Mineral Contents of Honeys from Bordj Bou Arreridj Region (Algeria)

Authors: Diafat Abdelouahab, Ekhalfi A Hammoudia, Meribai Abdelmalek A, Bahloul Ahmedb

Abstract:

The present study aimed to characterize 30 honey samples from the Bordj Bou Arreridj region (Algeria) regarding their floral origins, physicochemical parameters, mineral composition and microbial safety. Mean values obtained for physicochemical parameters were: pH 4.11, 17.17% moisture, 0.0061% ash, 370.57μS cm−1 electrical conductivity, 21.98 meq/kg free acidity, and 9.703 mg/kg HMF. The mineral content was determined by atomic absorption spectrometry. The mean values obtained were (mg/kg): Fe, 7.5714; Mg, 37.68; Na, 186,63; Zn, 3,86; Pb, 0,4869 × 10-3 ; Cd, 267 × 10-3. Aerobic mesophiles, fecal coliforms and sulphite-reducing clostridia were the microbial contaminants of interest studied. Microbiologically, the honey quality was considered good and all samples showed to be negative in respect to safety parameters. The results obtained for physicochemical characteristics of Bordj Bou Arreridj honey indicate a good quality level, adequate processing, good maturity and freshness.

Keywords: pollen analysis, physicochemical analysis, mineral content, microbial contaminants

Procedia PDF Downloads 91
2885 Application of the Seismic Reflection Survey to an Active Fault Imaging

Authors: Nomin-Erdene Erdenetsogt, Tseedulam Khuut, Batsaikhan Tserenpil, Bayarsaikhan Enkhee

Abstract:

As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys.

Keywords: Mogod fault, geophysics, seismic processing, seismic reflection survey

Procedia PDF Downloads 130
2884 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 133
2883 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 387
2882 Detecting Model Financial Statement Fraud by Auditor Industry Specialization with Fraud Triangle Analysis

Authors: Reskino Resky

Abstract:

This research purposes to create a model to detecting financial statement fraud. This research examines the variable of fraud triangle and auditor industry specialization with financial statement fraud. This research used sample of company which is listed in Indonesian Stock Exchange that have sanctions and cases by Financial Services Authority in 2011-2013. The number of company that were became in this research were 30 fraud company and 30 non-fraud company. The method of determining the sample is by using purposive sampling method with judgement sampling, while the data processing methods used by researcher are mann-whitney u and discriminants analysis. This research have two from five variable that can be process with discriminant analysis. The result shows the financial targets can be detect financial statement fraud, while financial stability can’t be detect financial statement fraud.

Keywords: fraud triangle analysis, financial targets, financial stability, auditor industry specialization, financial statement fraud

Procedia PDF Downloads 459
2881 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 125
2880 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 392
2879 Domain Switching Characteristics of Lead Zirconate Titanate Piezoelectric Ceramic

Authors: Mitsuhiro Okayasu

Abstract:

To better understand the lattice characteristics of lead zirconate titanate (PZT) ceramics, the lattice orientations and domain-switching characteristics have been directly examined during loading and unloading using various experimental techniques. Upon loading, the PZT ceramics are fractured linear and nonlinearly during the compressive loading process. The strain characteristics of the PZT ceramic were directly affected by both the lattice and domain switching strain. Due to the piezoelectric ceramic, electrical activity of lightning-like behavior occurs in the PZT ceramics, which attributed to the severe domain-switching leading to weak piezoelectric property. The characteristics of domain-switching and reverse switching are detected during the loading and unloading processes. The amount of domain-switching depends on the grain, due to different stress levels. In addition, two patterns of 90˚ domain-switching systems are characterized, namely (i) 90˚ turn about the tetragonal c-axis and (ii) 90˚ rotation of the tetragonal a-axis. In this case, PZT ceramic was loaded by the thermal stress at 80°C. Extent of domain switching is related to the direction of c-axis of the tetragonal structure, e.g., that axis, orientated close to the loading direction, makes severe domain switching. It is considered that there is 90˚ domain switching, but in actual, the angle of domain switching is less than 90˚, e.g., 85.4° ~ 90.0°. In situ TEM observation of the domain switching characteristics of PZT ceramic has been conducted with increasing the sample temperature from 25°C to 300°C, and the domain switching like behavior is directly observed from the lattice image, where the severe domain switching occurs less than 100°C.

Keywords: PZT, lead zirconate titanate, piezoelectric ceramic, domain switching, material property

Procedia PDF Downloads 204
2878 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 398
2877 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 292
2876 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 236
2875 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method

Procedia PDF Downloads 352
2874 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences

Procedia PDF Downloads 404
2873 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 400
2872 Sparsity Order Selection and Denoising in Compressed Sensing Framework

Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar

Abstract:

Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.

Keywords: compressed sensing, data denoising, model order selection, sparse representation

Procedia PDF Downloads 484
2871 Degumming of Eri Silk Fabric with Ionic Liquid

Authors: Shweta K. Vyas, Rakesh Musale, Sanjeev R. Shukla

Abstract:

Eri silk is a non mulberry silk which is obtained without killing the silkworms and hence it is also known as Ahmisa silk. In the present study, the results on degumming of eri silk with alkaline peroxide have been compared with those obtained by using ionic liquid (IL) 1-Butyl-3-methylimidazolium chloride [BMIM]Cl. Experiments were designed to find out the optimum processing parameters for degumming of eri silk by response surface methodology. The statistical software, Design-Expert 6.0 was used for regression analysis and graphical analysis of the responses obtained by running the set of designed experiments. Analysis of variance (ANOVA) was used to estimate the statistical parameters. The polynomial equation of quadratic order was employed to fit the experimental data. The quality and model terms were evaluated by F-test. Three dimensional surface plots were prepared to study the effect of variables on different responses. The optimum conditions for IL treatment were selected from predicted combinations and the experiments were repeated under these conditions to determine the reproducibility.

Keywords: silk degumming, ionic liquid, response surface methodology, ANOVA

Procedia PDF Downloads 594
2870 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle

Authors: Hassam Muazzam

Abstract:

This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.

Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location

Procedia PDF Downloads 410
2869 Improving Road Infrastructure Safety Management Through Statistical Analysis of Road Accident Data. Case Study: Streets in Bucharest

Authors: Dimitriu Corneliu-Ioan, Gheorghe FrațIlă

Abstract:

Romania has one of the highest rates of road deaths among European Union Member States, and there is a concern that the country will not meet its goal of "zero deaths" by 2050. The European Union also aims to halve the number of people seriously injured in road accidents by 2030. Therefore, there is a need to improve road infrastructure safety management in Romania. The aim of this study is to analyze road accident data through statistical methods to assess the current state of road infrastructure safety in Bucharest. The study also aims to identify trends and make forecasts regarding serious road accidents and their consequences. The objective is to provide insights that can help prioritize measures to increase road safety, particularly in urban areas. The research utilizes statistical analysis methods, including exploratory analysis and descriptive statistics. Databases from the Traffic Police and the Romanian Road Authority are analyzed using Excel. Road risks are compared with the main causes of road accidents to identify correlations. The study emphasizes the need for better quality and more diverse collection of road accident data for effective analysis in the field of road infrastructure engineering. The research findings highlight the importance of prioritizing measures to improve road safety in urban areas, where serious accidents and their consequences are more frequent. There is a correlation between the measures ordered by road safety auditors and the main causes of serious accidents in Bucharest. The study also reveals the significant social costs of road accidents, amounting to approximately 3% of GDP, emphasizing the need for collaboration between local and central administrations in allocating resources for road safety. This research contributes to a clearer understanding of the current road infrastructure safety situation in Romania. The findings provide critical insights that can aid decision-makers in allocating resources efficiently and institutionally cooperating to achieve sustainable road safety. The data used for this study are collected from the Traffic Police and the Romanian Road Authority. The data processing involves exploratory analysis and descriptive statistics using the Excel tool. The analysis allows for a better understanding of the factors contributing to the current road safety situation and helps inform managerial decisions to eliminate or reduce road risks. The study addresses the state of road infrastructure safety in Bucharest and analyzes the trends and forecasts regarding serious road accidents and their consequences. It studies the correlation between road safety measures and the main causes of serious accidents. To improve road safety, cooperation between local and central administrations towards joint financial efforts is important. This research highlights the need for statistical data processing methods to substantiate managerial decisions in road infrastructure management. It emphasizes the importance of improving the quality and diversity of road accident data collection. The research findings provide a critical perspective on the current road safety situation in Romania and offer insights to identify appropriate solutions to reduce the number of serious road accidents in the future.

Keywords: road death rate, strategic objective, serious road accidents, road safety, statistical analysis

Procedia PDF Downloads 87
2868 Object Oriented Software Engineering Approach to Industrial Information System Design and Implementation

Authors: Issa Hussein Manita

Abstract:

This paper presents an example of industrial information system design and implementation (IIDC), the most common software engineering design steps that are applied to the different design stages. We are going through the life cycle of software system development. We start by a study of system requirement and end with testing and delivering system, going by system design and coding, program integration and system integration step. The most modern software design tools available used in the design this includes, but not limited to, Unified Modeling Language (UML), system modeling, SQL server side application, uses case analysis, design and testing as applied to information processing systems. The system is designed to perform tasks specified by the client with real data. By the end of the implementation of the system, default or user defined acceptance policy to provide an overall score as an indication of the system performance is used. To test the reliability of he designed system, it is tested in different environment and different work burden such as multi-user environment.

Keywords: software engineering, design, system requirement, integration, unified modeling language

Procedia PDF Downloads 570
2867 Nanoindentation and Physical Properties of Polyvinyl Chloride/Styrene Co-Maleic Anhydride Blend Reinforced by Organo-Bentonite

Authors: D. E. Abulyazied, S. M. Mokhtar, A. M. Motawie

Abstract:

Polymer blends represent an important class of materials in engineering applications. The incorporation of clay nanofiller may provide new opportunities for this type of materials to enhance their applications. This article reports on the effects of clay on the structure and properties of polymer blends nanocomposites, based on Polyvinyl chloride PVC and styrene co-maleic anhydride SMA blend. Modification of the Egyptian Bentonite EB was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity CEC of the EB was measured. The octadecylamine bentonite ODA-B was characterized using Fourier transform infrared Spectroscopy FTIR, X-Ray Diffraction XRD, and Transition Electron Microscope TEM. A blend of Polyvinyl chloride PVC and styrene co-maleic anhydride SMA (50:50) was prepared in Tetra Hydro Furan (THF). Then nanocomposites of PVC/SMA/ODA-B were prepared by solution intercalation polymerization from 0.50% up to 5% by weight of ODA-B. The nanocomposites are characterized by XRD, TEM. Thermal, nanoindentation, swelling and electrical properties of the nanocomposites were measured. The morphology of the nanocomposites showed that ODA-B achieved good dispersion in the PVC/SMA matrix. Incorporation of 0.5 %, 1%, 3% and 5% by weight nanoclay into the PVC/SMA blends results in an improvement in nanohardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa (37% increase) with the introduction of 3% by weight nanoclay. The cross-link density of the nanocomposites increases with increasing the content of ODA-B.

Keywords: PVC, SMA, nanocomposites, nanoindentation, organo-bentonite

Procedia PDF Downloads 373
2866 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: feature fusion, image retrieval, membership function, normalization

Procedia PDF Downloads 348
2865 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 126
2864 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 658
2863 A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill

Authors: Mohammadhadi Mirmohammadi, Reza Safian, Hossein Haddad

Abstract:

This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented.

Keywords: derivative-free optimization, Improving Hit and Run method, real-coded genetic algorithm, rolling schedules of tandem cold rolling mill

Procedia PDF Downloads 701