Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 57

Search results for: Euclidean

57 Speed up Vector Median Filtering by Quasi Euclidean Norm

Authors: Vinai K. Singh


For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.

Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics

Procedia PDF Downloads 388
56 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel


Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 366
55 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi


Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability

Procedia PDF Downloads 262
54 Refutation of Imre Hermann's Allegation: János Bolyai Was Not Insane

Authors: Oláh Gál Róbert, Veress Bágyi Ibolya


The scientific public has relatively little knowledge about the Hungarian János Bolyai, one of the greatest thinkers of all times. Few people know that apart from being the founder of the non-Euclidean geometry he was also interested in sociology, philosophy, epistemology and linguistics. According to the renowned Hungarian psychoanalytic Imre Hermann, who lives in France, János Bolyai was mentally deranged. However, this is incorrect. The present article intends to prove that he was completely sane until the moment of his death.

Keywords: Imre Hermann, insane, János Bolyai, mathematics, non-Euclidean geometry, psyphoanalytic

Procedia PDF Downloads 415
53 Vector-Based Analysis in Cognitive Linguistics

Authors: Chuluundorj Begz


This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.

Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space

Procedia PDF Downloads 460
52 Teaching Non-Euclidean Geometries to Learn Euclidean One: An Experimental Study

Authors: Silvia Benvenuti, Alessandra Cardinali


In recent years, for instance, in relation to the Covid 19 pandemic and the evidence of climate change, it is becoming quite clear that the development of a young kid into an adult citizen requires a solid scientific background. Citizens are required to exert logical thinking and know the methods of science in order to adapt, understand, and develop as persons. Mathematics sits at the core of these required skills: learning the axiomatic method is fundamental to understand how hard sciences work and helps in consolidating logical thinking, which will be useful for the entire life of a student. At the same time, research shows that the axiomatic study of geometry is a problematic topic for students, even for those with interest in mathematics. With this in mind, the main goals of the research work we will describe are: (1) to show whether non-Euclidean geometries can be a tool to allow students to consolidate the knowledge of Euclidean geometries by developing it in a critical way; (2) to promote the understanding of the modern axiomatic method in geometry; (3) to give students a new perspective on mathematics so that they can see it as a creative activity and a widely discussed topic with a historical background. One of the main issues related to the state-of-the-art in this topic is the shortage of experimental studies with students. For this reason, our aim is to show further experimental evidence of the potential benefits of teaching non-Euclidean geometries at high school, based on data collected from a study started in 2005 in the frame of the Italian National Piano Lauree Scientifiche, continued by a teacher training organized in September 2018, perfected in a pilot study that involved 77 high school students during the school years 2018-2019 and 2019-2020. and finally implemented through an experimental study conducted in 2020-21 with 87 high school students. Our study shows that there is potential for further research to challenge current conceptions of the school mathematics curriculum and of the capabilities of high school mathematics students.

Keywords: Non-Euclidean geometries, beliefs about mathematics, questionnaires, modern axiomatic method

Procedia PDF Downloads 1
51 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski


We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 17
50 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems

Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song


In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.

Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance

Procedia PDF Downloads 257
49 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee


Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment

Procedia PDF Downloads 196
48 Comparison of Heuristic Methods for Solving Traveling Salesman Problem

Authors: Regita P. Permata, Ulfa S. Nuraini


Traveling Salesman Problem (TSP) is the most studied problem in combinatorial optimization. In simple language, TSP can be described as a problem of finding a minimum distance tour to a city, starting and ending in the same city, and exactly visiting another city. In product distribution, companies often get problems in determining the minimum distance that affects the time allocation. In this research, we aim to apply TSP heuristic methods to simulate nodes as city coordinates in product distribution. The heuristics used are sub tour reversal, nearest neighbor, farthest insertion, cheapest insertion, nearest insertion, and arbitrary insertion. We have done simulation nodes using Euclidean distances to compare the number of cities and processing time, thus we get optimum heuristic method. The results show that the optimum heuristic methods are farthest insertion and nearest insertion. These two methods can be recommended to solve product distribution problems in certain companies.

Keywords: Euclidean, heuristics, simulation, TSP

Procedia PDF Downloads 58
47 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee


The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 208
46 Triangular Geometric Feature for Offline Signature Verification

Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad


Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.

Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier

Procedia PDF Downloads 252
45 [Keynote Talk]: Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method

Authors: Lina Wu, Jia Liu, Ye Li


The goal of this project is to investigate constant properties (called the Liouville-type Problem) for a p-stable map as a local or global minimum of a p-energy functional where the domain is a Euclidean space and the target space is a closed half-ellipsoid. The First and Second Variation Formulas for a p-energy functional has been applied in the Calculus Variation Method as computation techniques. Stokes’ Theorem, Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and the Bochner Formula as estimation techniques have been used to estimate the lower bound and the upper bound of the derived p-Harmonic Stability Inequality. One challenging point in this project is to construct a family of variation maps such that the images of variation maps must be guaranteed in a closed half-ellipsoid. The other challenging point is to find a contradiction between the lower bound and the upper bound in an analysis of p-Harmonic Stability Inequality when a p-energy minimizing map is not constant. Therefore, the possibility of a non-constant p-energy minimizing map has been ruled out and the constant property for a p-energy minimizing map has been obtained. Our research finding is to explore the constant property for a p-stable map from a Euclidean space into a closed half-ellipsoid in a certain range of p. The certain range of p is determined by the dimension values of a Euclidean space (the domain) and an ellipsoid (the target space). The certain range of p is also bounded by the curvature values on an ellipsoid (that is, the ratio of the longest axis to the shortest axis). Regarding Liouville-type results for a p-stable map, our research finding on an ellipsoid is a generalization of mathematicians’ results on a sphere. Our result is also an extension of mathematicians’ Liouville-type results from a special ellipsoid with only one parameter to any ellipsoid with (n+1) parameters in the general setting.

Keywords: Bochner formula, Calculus Stokes' Theorem, Cauchy-Schwarz Inequality, first and second variation formulas, Liouville-type problem, p-harmonic map

Procedia PDF Downloads 208
44 [Keynote Talk]: Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu


We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: differential forms, holder inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series

Procedia PDF Downloads 152
43 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George


Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 260
42 Biases in Numerically Invariant Joint Signatures

Authors: Reza Aghayan


This paper illustrates that numerically invariant joint signatures suffer biases in the resulting signatures. Next, we classify the arising biases as Bias Type 1 and Bias Type 2 and show how they can be removed.

Keywords: Euclidean and affine geometries, differential invariant signature curves, numerically invariant joint signatures, numerical analysis, numerical bias, curve analysis

Procedia PDF Downloads 507
41 Detailed Observations on Numerically Invariant Signatures

Authors: Reza Aghayan


Numerically invariant signatures were introduced as a new paradigm of the invariant recognition for visual objects modulo a certain group of transformations. This paper shows that the current formulation suffers from noise and indeterminacy in the resulting joint group-signatures and applies the n-difference technique and the m-mean signature method to minimize their effects. In our experimental results of applying the proposed numerical scheme to generate joint group-invariant signatures, the sensitivity of some parameters such as regularity and mesh resolution used in the algorithm will also be examined. Finally, several interesting observations are made.

Keywords: Euclidean and affine geometry, differential invariant G-signature curves, numerically invariant joint G-signatures, object recognition, noise, indeterminacy

Procedia PDF Downloads 314
40 Anti-Gravity to Neo-Concretism: The Epodic Spaces of Non-Objective Art

Authors: Alexandra Kennedy


Making use of the notion of ‘epodic spaces’ this paper presents a reconsideration of non-objective art practices, proposing alternatives to established materialist, formalist, process-based conceptualist approaches to such work. In his Neo-Concrete Manifesto (1959) Ferreira Gullar (1930-2016) sought to create a distinction between various forms of non-objective art. He distinguished the ‘geometric’ arts of neoplasticism, constructivism, and suprematism – which he described as ‘dangerously acute rationalism’ – from other non-objective practices. These alternatives, he proposed, have an expressive potential lacking in the former and this formed the basis for their categorisation as neo-concrete. Gullar prioritized the phenomenological over the rational, with an emphasis on the role of the spectator (a key concept of minimalism). Gullar highlighted the central role of sensual experience, colour and the poetic in such work. In the early twentieth century, Russian Cosmism – an esoteric philosophical movement – was highly influential on Russian avant-garde artists and can account for suprematist artists’ interest in, and approach to, planar geometry and four-dimensional space as demonstrated in the abstract paintings of Kasimir Malevich (1879-1935). Nikolai Fyodorov (1823-1903) promoted the idea of anti-gravity and cosmic space as the field for artistic activity. The artist and writer Kuzma Petrov-Vodkin (1878-1939) wrote on the concept of Euclidean space, the overcoming of such rational conceptions of space and the breaking free from the gravitational field and the earth’s sphere. These imaginary spaces, which also invoke a bodily experience, present a poetic dimension to the work of the suprematists. It is a dimension that arguably aligns more with Gullar’s formulation of his neo-concrete rather than that of his alignment of Suprematism with rationalism. While found in experiments with planar geometry, the interest in forms suggestive of an experience of breaking free–both physically from the earth and conceptually from rational, mathematical space (in a pre-occupation with non-Euclidean space and anti-geometry) and in their engagement with the spatial properties of colour, Suprematism presents itself as imaginatively epodic. The paper discusses both historical and contemporary non-objective practices in this context, drawing attention to the manner in which the category of the non-objective is used to categorise art works which are, arguably, qualitatively different.

Keywords: anti-gravity, neo-concrete, non-Euclidian geometry, non-objective painting

Procedia PDF Downloads 81
39 Identification of Configuration Space Singularities with Local Real Algebraic Geometry

Authors: Marc Diesse, Hochschule Heilbronn


We address the question of identifying the configuration space singularities of linkages, i.e., points where the configuration space is not locally a submanifold of Euclidean space. Because the configuration space cannot be smoothly parameterized at such points, these singularity types have a significantly negative impact on the kinematics of the linkage. It is known that Jacobian methods do not provide sufficient conditions for the existence of CS-singularities. Herein, we present several additional algebraic criteria that provide the sufficient conditions. Further, we use those criteria to analyze certain classes of planar linkages. These examples will also show how the presented criteria can be checked using algorithmic methods.

Keywords: linkages, configuration space-singularities, real algebraic geometry, analytic geometry

Procedia PDF Downloads 69
38 Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles

Authors: Anthony Overmars, Sitalakshmi Venkatraman


This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography.

Keywords: Pythagorean triples, platonic triples, right angle triangles, co-prime numbers, cryptography

Procedia PDF Downloads 127
37 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li


This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 222
36 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator

Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan


The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.

Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space

Procedia PDF Downloads 162
35 Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image

Authors: Sangeeta Yadav, Mantosh Biswas


In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent.

Keywords: cluster, ncolor method, K-mean method, interactive selection process

Procedia PDF Downloads 216
34 Decision Trees Constructing Based on K-Means Clustering Algorithm

Authors: Loai Abdallah, Malik Yousef


A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.

Keywords: ensemble clustering, decision trees, classification, K nearest neighbors

Procedia PDF Downloads 101
33 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang


The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem

Procedia PDF Downloads 141
32 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal


Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 292
31 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani


This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 388
30 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm

Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang


The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.

Keywords: degree, initial cluster center, k-means, minimum spanning tree

Procedia PDF Downloads 316
29 A Geometrical Method for the Smoluchowski Equation on the Sphere

Authors: Adriano Valdes-Gomez, Francisco Javier Sevilla


We devise a numerical algorithm to simulate the diffusion of a Brownian particle restricted to the surface of a three-dimensional sphere when the particle is under the effects of an external potential that is coupled linearly. It is obtained using elementary geometry, yet, it converges, in the weak sense, to the solutions to the Smoluchowski equation. Rotations on the sphere, which are the analogs of linear displacements in euclidean spaces, are calculated using algebraic operations and then by a proper scaling, which makes the algorithm efficient and quite simple, especially to what may be the short-time propagator approach. Our findings prove that the global effects of curvature are taken into account in both dynamic and stationary processes, and it is not restricted to work in configuration space, neither restricted to the overdamped limit. We have generalized it successfully to simulate the Kramers or the Ornstein-Uhlenbeck process, where it is necessary to work directly in phase space, and it may be adapted to other two dimensional surfaces with non-constant curvature.

Keywords: diffusion on the sphere, Fokker-Planck equation on the sphere, non equilibrium processes on the sphere, numerical methods for diffusion on the sphere

Procedia PDF Downloads 83
28 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang


This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search

Procedia PDF Downloads 84