Search results for: finite elements method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22325

Search results for: finite elements method

18215 An Efficient Separation for Convolutive Mixtures

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin

Abstract:

This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.

Keywords: Blind source separation, estimates, full-band, mixtures, sub-band

Procedia PDF Downloads 437
18214 Quantum Algebra from Generalized Q-Algebra

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of the notion of Q algebras. A brief introduction to quantum mechanics is given, in that systems the state defined by a vector in a complex vector space H which have Hermitian inner product property. H may be finite or infinite-dimensional. In quantum mechanics, operators must be hermitian. These facts are saved by Lie algebra operators but not by those of quantum algebras. A Hilbert space H consists of a set of vectors and a set of scalars. Lie group is a differentiable topological space with group laws given by differentiable maps. A Lie algebra has been introduced. Q-algebra has been defined. A brief introduction to BCI-algebra is given. A BCI sub algebra is introduced. A brief introduction to BCK=BCH-algebra is given. Every BCI-algebra is a BCH-algebra. Homomorphism maps meanings are introduced. Homomorphism maps between two BCK algebras are defined. The mathematical formulations of quantum mechanics can be expressed using the theory of unitary group representations. A generalization of Q algebras has been introduced, and their properties have been considered. The Q- quantum algebra has been studied, and various examples have been given.

Keywords: Q-algebras, BCI, BCK, BCH-algebra, quantum mechanics

Procedia PDF Downloads 188
18213 Appropriation of Cryptocurrencies as a Payment Method by South African Retailers

Authors: Neliswa Dyosi

Abstract:

Purpose - Using an integrated Technology-Organization-Environment (TOE) framework and the model of technology appropriation (MTA) as a theoretical lens, this interpretive qualitative study seeks to understand and explain the factors that influence the appropriation, non-appropriation, and disappropriation of bitcoin as a payment method by South African retailers. Design/methodology/approach –The study adopts the interpretivist philosophical paradigm. Multiple case studies will be adopted as a research strategy. For data collection, the study follows a qualitative approach. Qualitative data will be collected from the six retailers in various industries. Semi-structured interviews and documents will be used as the data collection techniques. Purposive and snowballing sampling techniques will be used to identify participants within the organizations. Data will be analyzed using thematic analysis. Originality/value - Using the deduction approach, the study seeks to provide a descriptive and explanatory contribution to theory. The study contributes to theory development by integrating the MTA and TOE frameworks as a means to understand technology adoption behaviors of organizations, in this case, retailers. This is also the first study that looks at an integrated approach of the Technology-Organization-Environment (TOE) framework and the MTA framework to understand the adoption and use of a payment method. South Africa is ranked amongst the top ten countries in the world on cryptocurrency adoption. There is, however, still a dearth of literature on the current state of adoption and usage of bitcoin as a payment method in South Africa. The study will contribute to the existing literature as bitcoin cryptocurrency is gaining popularity as an alternative payment method across the globe.

Keywords: cryptocurrency, bitcoin, payment methods, blockchain, appropriation, online retailers, TOE framework, disappropriation, non-appropriation

Procedia PDF Downloads 123
18212 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 182
18211 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 307
18210 Nanofluids and Hybrid Nanofluids: Comparative Study of Mixed Convection in a Round Bottom Flask

Authors: Hicham Salhi

Abstract:

This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results. This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results.

Keywords: bottom flask, mixed convection, hybrid nanofluids, numerical simulation

Procedia PDF Downloads 71
18209 Development of Standard Evaluation Technique for Car Carpet Floor

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Statistical Energy Analysis is to be the most effective CAE Method for air-born noise analysis in the Automotive area. This study deals with a method to predict the noise level inside of the car under the steady-state condition using the SEA model of car for air-born noise analysis. We can identify weakened part due to the acoustic material properties using it. Therefore, it is useful for the material structural design.

Keywords: air-born noise, material structural design, acoustic material properties, absorbing

Procedia PDF Downloads 414
18208 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: differential transformation method, functionally graded material, mode shape, natural frequency

Procedia PDF Downloads 292
18207 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm

Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang

Abstract:

The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.

Keywords: degree, initial cluster center, k-means, minimum spanning tree

Procedia PDF Downloads 399
18206 New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry

Authors: Vijayalakshmi Marella, NageswaraRaoPilli

Abstract:

This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies.

Keywords: Montelukast, tandem mass spectrometry, montelukast d6, FDA guidelines

Procedia PDF Downloads 307
18205 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members

Authors: I. Gkolfinopoulos, N. Chijiwa

Abstract:

To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.

Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon

Procedia PDF Downloads 133
18204 Analysis of Transmedia Storytelling in Pokémon GO

Authors: Iva Nedelcheva

Abstract:

This study is part of a doctoral thesis on the topic of Hyperfiction: Past, Present and Future of Storytelling through Hypertext. It explores in depth the impact of transmedia storytelling and the role of hypertext in the realm of the currently popular social media phenomenon Pokémon GO. Storytelling is a powerful method to engage and unite people. Moreover, the technology progress adds a whole new angle to the method, with hypertext and cross-platform sharing that enhance the traditional storytelling so much that transmedia storytelling gives unlimited opportunities to affect the everyday life of people across the globe. This research aims at examining the transmedia storytelling approach in Pokémon GO, and explaining how that contributed to its establishment as a massive worldwide hit in less than a week. The social engagement is investigated in all major media platforms, including traditional and online media channels. Observation and content analyses are reported in this paper to form the conclusion that transmedia storytelling with the input of hypertext has a promising future as a method of establishing a productive and rewarding communication strategy.

Keywords: communication, hypertext, Pokemon Go, storytelling, transmedia

Procedia PDF Downloads 159
18203 Approximating a Funicular Shape with a Translational Surface, Example of a Glass Canopy

Authors: Raphaël Menard, Etienne Fayette, Paul Azzopardi

Abstract:

This paper presents the method to generate the geometry of an actual glass canopy project in Rennes, France, by architect Bruno Gaudin, with aim to achieve the best structural efficiency possible using only quadrangle meshing. The paper includes equation of the translational surface generated, the level of accuracy in approximating the funicular shape and the method of constructive implementation.

Keywords: funicular shape, glass canopy, glass panels, lowered arches, mathematics, penalization, shell structure

Procedia PDF Downloads 541
18202 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model

Procedia PDF Downloads 310
18201 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 324
18200 Aging Effect on Mechanical Behavior of Duplex Stainless Steel

Authors: Jeonho Moon, Tae Kwon Ha

Abstract:

In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0 C, 0.2 Mn, 3.8 Cr, 1.5 W, 8.5 Co, 9.2 Mo, and 1.0 V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3wt.% were cast into ingots of 140 mm x 140 mm x 330 mm by vacuum induction melting. After solution treatment at 1150 °C for 1.5 hr followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminum and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.

Keywords: duplex stainless steel, alloying elements, eutectic carbides, microstructure, hot workability

Procedia PDF Downloads 410
18199 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.

Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate

Procedia PDF Downloads 322
18198 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area

Authors: Pitak Keawbunsong, Sathaporn Promwong

Abstract:

This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.

Keywords: DTTV propagation, path loss model, Davidson model, least square method

Procedia PDF Downloads 330
18197 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper

Authors: Kaige Shi, Chao Jiang, Xin Li

Abstract:

The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.

Keywords: swirl gripper, noncontact handling, levitation, gap height estimation

Procedia PDF Downloads 126
18196 Multivariate Simulations of the Process of Forming the Automotive Connector Forging from ZK60 Alloy

Authors: Anna Dziubinska

Abstract:

The article presents the results of numerical simulations of the new forging process of the automotive connector forging from cast preform. The high-strength ZK60 alloy (belonging to the Mg-Zn-Zr group of Mg alloys) was selected for numerical tests. Currently, this part of the industry is produced by multi-stage forging consisting of operations: bending, preforming, and finishing. The use of the cast preform would enable forging this component in one operation. However, obtaining specific mechanical properties requires inducing a certain level of strain within the forged part. Therefore, the design of the preform, its shape, and volume are of paramount importance. In work presented in this article, preforms of different shapes were designed and assessed using Finite Element (FE) analysis. The research was funded by the Polish National Agency for Academic Exchange within the framework of the Bekker programme.

Keywords: automotive connector, forging, magnesium alloy, numerical simulation, preform, ZK60

Procedia PDF Downloads 125
18195 The Influence of Water on the Properties of Cellulose Fibre Insulation

Authors: Pablo Lopez Hurtado, Antroine Rouilly, Virginie Vandenbossche

Abstract:

Cellulose fibre insulation is an eco-friendly building material made from recycled paper fibres, treated with borates for fungal and fire resistance. It is comparable in terms of thermal and acoustic performance to mineral wool insulation and other insulation materials based on non-renewable resources. The main method of application consists in separating and blowing the fibres in attics or closed wall cavities. Another method, known as the “wet spray method” is gaining interest. With this method the fibres are projected with pulverized water, which stick to the wall cavities. The issue with the wet spray technique is that the water dosage could be difficult to control. A high water dosage implies not only a longer drying time, depending on ambient conditions, but also a change in the performance of the material itself. In our work we studied the thermal and mechanical properties of wet spray-cellulose insulation in order to understand how water dosage could affect these properties. The material was first characterized to study the chemical and physical properties of the fibres. Then representative samples of wet sprayed cellulose with varying applied water dosage were subject to thermal conductivity and compression testing in order to better understand how changes in the fibres induced by drying can affect these properties.

Keywords: cellulose fibre, recycled paper, moisture sorption, thermal insulation

Procedia PDF Downloads 296
18194 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 420
18193 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 375
18192 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 44
18191 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method

Authors: Chong Wang, Alexandre Urbano Hoffmann

Abstract:

Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.

Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction

Procedia PDF Downloads 420
18190 Proposal Evaluation of Critical Success Factors (CSF) in Lean Manufacturing Projects

Authors: Guilherme Gorgulho, Carlos Roberto Camello Lima

Abstract:

Critical success factors (CSF) are used to design the practice of project management that can lead directly or indirectly to the success of the project. This management includes many elements that have to be synchronized in order to ensure the project on-time delivery, quality and the lowest possible cost. The objective of this work is to develop a proposal for evaluation of the FCS in lean manufacturing projects, and apply the evaluation in a pilot project. The results show that the use of continuous improvement programs in organizations brings benefits as the process cost reduction and improve productivity.

Keywords: continuous improvement, critical success factors (csf), lean thinking, project management

Procedia PDF Downloads 353
18189 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column

Authors: G. Rajapakse, S. Jayasinghe, A. Fleming

Abstract:

This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.

Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter

Procedia PDF Downloads 104
18188 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization

Procedia PDF Downloads 358
18187 Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually.

Keywords: stress intensity factor, semi-elliptical crack, rotating disk, finite element analysis (FEA)

Procedia PDF Downloads 356
18186 Improving Detection of Illegitimate Scores and Assessment in Most Advantageous Tenders

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

The Most Advantageous Tender (MAT) has been criticized for its susceptibility to dictatorial situations and for its processing of same score, same rank issues. This study applies the four criteria from Arrow's Impossibility Theorem to construct a mechanism for revealing illegitimate scores in scoring methods. While commonly be used to improve on problems resulting from extreme scores, ranking methods hide significant defects, adversely affecting selection fairness. To address these shortcomings, this study relies mainly on the overall evaluated score method, using standardized scores plus normal cumulative distribution function conversion to calculate the evaluation of vender preference. This allows for free score evaluations, which reduces the influence of dictatorial behavior and avoiding same score, same rank issues. Large-scale simulations confirm that this method outperforms currently used methods using the Impossibility Theorem.

Keywords: Arrow’s impossibility theorem, cumulative normal distribution function, most advantageous tender, scoring method

Procedia PDF Downloads 458