Search results for: Artificial Neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6715

Search results for: Artificial Neural network

2635 Arc Interruption Design for DC High Current/Low SC Fuses via Simulation

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This report summarizes a simulation-based approach to estimate the current interruption behavior of a fuse element utilized in a DC network protecting battery banks under different stresses. Due to internal resistance of the battries, the short circuit current in very close to the nominal current, and it makes the fuse designation tricky. The base configuration considered in this report consists of five fuse units in parallel. The simulations are performed using a multi-physics software package, COMSOL® 5.6, and the necessary material parameters have been calculated using two other software packages.The first phase of the simulation starts with the heating of the fuse elements resulted from the current flow through the fusing element. In this phase, the heat transfer between the metallic strip and the adjacent materials results in melting and evaporation of the filler and housing before the aluminum strip is evaporated and the current flow in the evaporated strip is cut-off, or an arc is eventually initiated. The initiated arc starts to expand, so the entire metallic strip is ablated, and a long arc of around 20 mm is created within the first 3 milliseconds after arc initiation (v_elongation = 6.6 m/s. The final stage of the simulation is related to the arc simulation and its interaction with the external circuitry. Because of the strong ablation of the filler material and venting of the arc caused by the melting and evaporation of the filler and housing before an arc initiates, the arc is assumed to burn in almost pure ablated material. To be able to precisely model this arc, one more step related to the derivation of the transport coefficients of the plasma in ablated urethane was necessary. The results indicate that an arc current interruption, in this case, will not be achieved within the first tens of milliseconds. In a further study, considering two series elements, the arc was interrupted within few milliseconds. A very important aspect in this context is the potential impact of many broken strips parallel to the one where the arc occurs. The generated arcing voltage is also applied to the other broken strips connected in parallel with arcing path. As the gap between the other strips is very small, a large voltage of a few hundred volts generated during the current interruption may eventually lead to a breakdown of another gap. As two arcs in parallel are not stable, one of the arcs will extinguish, and the total current will be carried by one single arc again. This process may be repeated several times if the generated voltage is very large. The ultimate result would be that the current interruption may be delayed.

Keywords: DC network, high current / low SC fuses, FEM simulation, paralle fuses

Procedia PDF Downloads 71
2634 Mobile Cloud Computing: How to Improve

Authors: Abdullah Aljumah, Tariq Ahamad

Abstract:

The simplest possible human-computer interaction is mobile cloud computing as it emerges and makes the use of all modern-day human-oriented technology. The main aim of this idea is the QoS (quality of service) by using user-friendly and reliable software over the global network in order to make it economical by reducing cost, reliable, and increase the main storage. Since we studied and went through almost all the existing related work in this area and we came up with some challenges that will rise or might be rising for some basic areas in mobile cloud computing and mostly stogie and security area. In this research article, we suggest some recommendation for mobile cloud computing and for its security that will help in building more powerful tools to handle all this pressure.

Keywords: Cloud Computing, MCC, SAAS, computer interaction

Procedia PDF Downloads 385
2633 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems

Authors: Joachim F. Sartor

Abstract:

According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.

Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage

Procedia PDF Downloads 156
2632 Understanding Evolutionary Algorithms through Interactive Graphical Applications

Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez

Abstract:

It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.

Keywords: education, evolutionary algorithms, evolution strategies, interactive learning applications

Procedia PDF Downloads 342
2631 Discrimination in Insurance Pricing: A Textual-Analysis Perspective

Authors: Ruijuan Bi

Abstract:

Discrimination in insurance pricing is a topic of increasing concern, particularly in the context of the rapid development of big data and artificial intelligence. There is a need to explore the various forms of discrimination, such as direct and indirect discrimination, proxy discrimination, algorithmic discrimination, and unfair discrimination, and understand their implications in insurance pricing models. This paper aims to analyze and interpret the definitions of discrimination in insurance pricing and explore measures to reduce discrimination. It utilizes a textual analysis methodology, which involves gathering qualitative data from relevant literature on definitions of discrimination. The research methodology focuses on exploring the various forms of discrimination and their implications in insurance pricing models. Through textual analysis, this paper identifies the specific characteristics and implications of each form of discrimination in the general insurance industry. This research contributes to the theoretical understanding of discrimination in insurance pricing. By analyzing and interpreting relevant literature, this paper provides insights into the definitions of discrimination and the laws and regulations surrounding it. This theoretical foundation can inform future empirical research on discrimination in insurance pricing using relevant theories of probability theory.

Keywords: algorithmic discrimination, direct and indirect discrimination, proxy discrimination, unfair discrimination, insurance pricing

Procedia PDF Downloads 77
2630 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada

Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman

Abstract:

Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.

Keywords: HAND, DTM, rapid floodplain, simplified conceptual models

Procedia PDF Downloads 154
2629 Review of Cable Fault Locating Methods and Usage of VLF for Real Cases of High Resistance Fault Locating

Authors: Saadat Ali, Rashid Abdulla Ahmed Alshehhi

Abstract:

Cable faults are always probable and common during or after commissioning, causing significant delays and disrupting power distribution or transmission network, which is intolerable for the utilities&service providers being their reliability and business continuity measures. Therefore, the adoption of rapid localization & rectification methodology is the main concern for them. This paper explores the present techniques available for high voltage cable localization & rectification and which is preferable with regards to easier, faster, and also less harmful to cables. It also provides insight experience of high resistance fault locating by utilization of the Very Low Frequency (VLF) method.

Keywords: faults, VLF, real cases, cables

Procedia PDF Downloads 115
2628 The Concept of Neurostatistics as a Neuroscience

Authors: Igwenagu Chinelo Mercy

Abstract:

This study is on the concept of Neurostatistics in relation to neuroscience. Neuroscience also known as neurobiology is the scientific study of the nervous system. In the study of neuroscience, it has been noted that brain function and its relations to the process of acquiring knowledge and behaviour can be better explained by the use of various interrelated methods. The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. On the other hand, Neurostatistics based on this study is viewed as a statistical concept that uses similar techniques of neuron mechanisms to solve some problems especially in the field of life science. This study is imperative in this era of Artificial intelligence/Machine leaning in the sense that clear understanding of the technique and its proper application could assist in solving some medical disorder that are mainly associated with the nervous system. This will also help in layman’s understanding of the technique of the nervous system in order to overcome some of the health challenges associated with it. For this concept to be well understood, an illustrative example using a brain associated disorder was used for demonstration. Structural equation modelling was adopted in the analysis. The results clearly show the link between the techniques of statistical model and nervous system. Hence, based on this study, the appropriateness of Neurostatistics application in relation to neuroscience could be based on the understanding of the behavioural pattern of both concepts.

Keywords: brain, neurons, neuroscience, neurostatistics, structural equation modeling

Procedia PDF Downloads 78
2627 Restoring Statecraft in the U.S. Economy: A Proposal for an American Entrepreneurial State

Authors: Miron Wolnicki

Abstract:

In the past 75 years the world was either influenced by, competing with or learning from U.S. corporations. This is no longer true. As the economic power shifts from the West to the East, U.S. corporations are lagging behind Asian competitors. Moreover, U.S. statecraft fails to address this decline. In a world dominated by interventionist and neo-mercantilist states, having an ineffective non-activist government becomes a costly neoclassic delusion which weakens the world’s largest economy. American conservative economists continue talking about the superiority of the free market system in generating new technologies. The reality is different. The U.S. is sliding further into an overregulated, over-taxed, anti-business state. This paper argues that in order to maintain its economic strength and technological leadership, the U.S. must reform federal institutions to increase support for artificial intelligence and other cutting-edge technologies. The author outlines a number of institutional reforms, under one umbrella, which he calls the American Entrepreneurial State (AES). The AES will improve productivity and bring about coherent business strategies for the next 10-15 years. The design and inspiration for the AES come from the experience of successful statecraft examples in Asia and also other parts the global economy.

Keywords: post-neoliberal system, entrepreneurial state, government and economy, American entrepreneurial state

Procedia PDF Downloads 127
2626 TikTok: AI Driven Features and Participants' Reaction

Authors: Baylasan Al-Amoudi, Hala Abdulmajeed, Amjad Jilani

Abstract:

This project explores the role of artificial intelligence (AI) in enhancing user engagement on TikTok by examining the app’s AI-driven features. Through a structured survey of 4 main questions and experimental analysis, we tried to examine how TikTok’s recommendations, algorithms, search engine, and filter tools influence user interactions and satisfaction. A diverse cohort of 20 participants, including casual users and content creators, were involved to provide a broad perspective on user experiences. The examination highlights the recommendation algorithm’s ability to deliver highly personalized content, creating a seamless and engaging experience. TikTok’s search engine is shown to simplify content discovery by enabling users to find specific topics or trends related to their preferences. Meanwhile, the filter tools are found to encourage creativity, particularly for content creators, by offering versatile options to enhance video quality and visual appeal. By evaluating the unique roles of these AI features, the project underscores their significance in maintaining TikTok’s appeal and driving consistent user engagement.

Keywords: TikTok, hashtags, filters, viral sounds, for you page

Procedia PDF Downloads 9
2625 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 118
2624 Teaching 'Sustainable Architecture' to Pre-School Children by School Building for a Clean Future

Authors: Cimen Ozburak

Abstract:

Pollution and the consumption of natural resources are significant global concerns. These problems have to be resolved in order to create a cleaner environment for the world. It is believed that sustainable building designs may reduce environmental problems throughout the world. It is known that if children receive environmental education in early childhood, they will be more likely to construct sustainable living systems and environment when they are older. School buildings can be used as educational material for teaching the natural and artificial environment in environmental education. In this study, the effect of school buildings on environmental education is examined by using the literature review method along with various examples. The selected examples in the study were analyzed according to 4 main criteria of LEED green building certification systems. These are the use of sustainable utilization of land, efficient utilization of water, efficient utilization of energy and efficient utilization of materials. According to the literature review, children who are educated in buildings designed according to these criteria, they will be environmentally sensitive individuals when they are older.

Keywords: clean future, educational sustainable pre-schools, environmental education, sustainable systems

Procedia PDF Downloads 258
2623 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications

Authors: Syed W. Hasan, Zhiqun Tian

Abstract:

Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.

Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning

Procedia PDF Downloads 146
2622 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 358
2621 Studies on the Teaching Pedagogy and Effectiveness for the Multi-Channel Storytelling for Social Media, Cinema, Game, and Streaming Platform: Case Studies of Squid Game

Authors: Chan Ka Lok Sobel

Abstract:

The rapid evolution of digital media platforms has given rise to new forms of narrative engagement, particularly through multi-channel storytelling. This research focuses on exploring the teaching pedagogy and effectiveness of multi-channel storytelling for social media, cinema, games, and streaming platforms. The study employs case studies of the popular series "Squid Game" to investigate the diverse pedagogical approaches and strategies used in teaching multi-channel storytelling. Through qualitative research methods, including interviews, surveys, and content analysis, the research assesses the effectiveness of these approaches in terms of student engagement, knowledge acquisition, critical thinking skills, and the development of digital literacy. The findings contribute to understanding best practices for incorporating multi-channel storytelling into educational contexts and enhancing learning outcomes in the digital media landscape.

Keywords: digital literacy, game-based learning, artificial intelligence, animation production, educational technology

Procedia PDF Downloads 122
2620 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 403
2619 Harmonization of Accreditation Standards in Education of Central Asian Countries: Theoretical Aspect

Authors: Yskak Nabi, Onolkan Umankulova, Ilyas Seitov

Abstract:

Tempus project about “Central Asian network for quality assurance – CANQA” had been implemented in 2009-2012. As the result of the project, two accreditation agencies were established: the agency for quality assurance in the field of education, “EdNet” in Kyrgyzstan, center of progressive technologies in Tajikistan. The importance of the research studies of the project is supported by the idea that the creation of Central-Asian network for quality assurance in education is still relevant, and results of the International forum “Global in regional: Kazakhstan in Bologna process and EU projects,” that was held in Nur-Sultan in October 2020, proves this. At the same time, the previous experience of the partnership between accreditation agencies of Central Asia shows that recommendations elaborated within the CANQA project were not theoretically justified. But there are a number of facts and arguments that prove the practical appliance of these recommendations. In this respect, joint activities of accreditation agencies of Kyrgyzstan and Kazakhstan are representative. For example, independent Kazakh agency of accreditation and rating successfully conducts accreditation of Kyrgyz universities; based on the memorandum about joint activity between the agency for quality assurance in the field of education “EdNet” (Kyrgyzstan) and Astana accreditation agency (Kazakhstan), the last one provides its experts for accreditation procedures in EdNet. Exchange of experience among the agencies shows an effective approach towards adaptation of European standards to the reality of education systems of Central Asia with consideration of not only a legal framework but also from the point of European practices view. Therefore, the relevance of the research is identified as there is a practical partnership between accreditation agencies of Central Asian countries, but the absence of theoretical justification of integrational processes in the accreditation field. As a result, the following hypothesis was put forward: “if to develop theoretical aspects for harmonization of accreditation standards, then integrational processes would be improved since the implementation of Bologna process principles would be supported with wider possibilities, and particularly, students and academic mobility would be improved.” Indeed, for example, in Kazakhstan, the total share of foreign students was 5,04% in 2020, and most of them are coming from Kyrgyzstan, Tajikistan, and Uzbekistan, and if integrational processes will be improved, then this share can increase.

Keywords: accreditation standards in education, Central Asian countries, pedagogical theory, model

Procedia PDF Downloads 206
2618 Cloud Computing in Jordanian Libraries: An Overview

Authors: Mohammad A. Al-Madi, Nagham A. Al-Madi, Fanan A. Al-Madi

Abstract:

The current concept of the technology of cloud computing libraries has been increasing where users can store their data in a virtual space and can be retrieved from anywhere whilst using the network. By using cloud computing technology, industries and individuals save money, time, and space. Moreover, data and information about libraries can be placed in the cloud. This paper discusses the meaning of cloud computing along with its types. Further, the focus has been given to the application of cloud computing in modern libraries. Additionally, the advantages of cloud computing and the areas in which cloud computing be applied with current usage are discussed. Finally, the present situation of the Jordanian libraries is considered and discussed in further detail.

Keywords: cloud computing, community cloud, hybrid cloud, private cloud, public cloud

Procedia PDF Downloads 225
2617 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 485
2616 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 209
2615 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 280
2614 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses

Authors: Nuri Caglayan, H. Kursat Celik

Abstract:

There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.

Keywords: air quality, fuzzy logic model, livestock housing, fan speed

Procedia PDF Downloads 378
2613 The Effect and Mechanisms of Electroacupuncture on Motion Sickness in Mice

Authors: Chanya Inprasit, Yi-Wen Lin

Abstract:

Motion sickness (MS) is an acute disorder that occurs in healthy persons without considering gender, age or ethnicity worldwide. All signs and symptoms of MS are the results of confliction and mismatch among neural signal inputs. It is known that no singular remedy works for everybody, and electroacupuncture (EA) is one of the popular alternative therapies used for MS. Our study utilized a mouse model in order to exclude any psychological factors of MS and EA. Mice lack an emetic reflex. Therefore pica behavior, which is a normal consumption of non-nutritive substances, was found to measure the response of MS in mice. In the laboratory, Kaolin was used as a non-nutrient food substance instead of natural substances lacking nutritional value such as wood, cloth, charcoal, soil or grass. It was hypothesized that EA treatment could reduce the symptoms of MS through the TRPV1 pathways. The results of pica behavior showed a significantly increased intake of kaolin in the MS group throughout the experiment period. Moreover, the Kaolin intake of the EA group decreased to the average baseline of the control group. There was no recorded difference in the food and water intake of each group. The results indicated an increase of the TRPV1, pERK, pJNK and pmTOR protein levels in the thalamus after MS stimulation, and a significant decrease in the EA group compared with that of the control group. These findings suggest that TRPV1 pathways are associated in MS mechanisms and can be reduced by EA.

Keywords: electroacupuncture, motion sickness, Thalamus, TRPV1

Procedia PDF Downloads 256
2612 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 258
2611 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery

Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado

Abstract:

Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.

Keywords: biometrics, deep learning, handwriting, signature forgery

Procedia PDF Downloads 88
2610 A Method for Automated Planning of Fiber to the Home Access Network Infrastructures

Authors: Hammad Khalid

Abstract:

In this paper, a strategy for computerized arranging of Fiber to the Home (FTTH) get to systems is proposed. We presented an efficient methodology for arranging access organize framework. The GIS information and a lot of calculations were utilized to make the arranging procedure increasingly programmed. The technique clarifies various strides of the arranging process. Considering various situations, various designs can be produced by utilizing the technique. It was likewise conceivable to produce the designs in an extremely brief temporal contrast with the conventional arranging. A contextual investigation is considered to delineate the utilization and abilities of the arranging technique. The technique, be that as it may, doesn't completely robotize the arranging however, make the arranging procedure fundamentally quick. The outcomes and dialog are displayed and end is given at last.

Keywords: FTTH, GIS, robotize, plan

Procedia PDF Downloads 157
2609 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 295
2608 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators

Authors: K. O'Malley

Abstract:

Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.

Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university

Procedia PDF Downloads 38
2607 Emotion Recognition Using Artificial Intelligence

Authors: Rahul Mohite, Lahcen Ouarbya

Abstract:

This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.

Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type

Procedia PDF Downloads 127
2606 Life Expansion: Autobiography, Ficctionalized Digital Diaries and Forged Narratives of Everyday Life on Instagram

Authors: Pablo M. S. Vallejos

Abstract:

The article aims to analyze the autobiographical practices of users on Instagram, observing the instrumentalization of image resources in the construction of visual narratives that make up that archive and digital diary. Through bibliographical review, discourse exploration and case studies, the research also aims to present a new theoretical perception about everyday records - edited with a collage of filters and aesthetic tools - that permeate that social network, understanding it as a platform fictionalizing and an expansion of life. In this way, therefore, the work reflects on possible futures in the elaboration of representations and identities in the context of digital spaces in the 21st century.

Keywords: visual culture, social media, autobiography, image

Procedia PDF Downloads 85