Search results for: priority based scheduling
25039 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)
Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil
Abstract:
Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles
Procedia PDF Downloads 23425038 Forecasting Amman Stock Market Data Using a Hybrid Method
Authors: Ahmad Awajan, Sadam Al Wadi
Abstract:
In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series
Procedia PDF Downloads 13425037 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 15525036 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 8525035 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 37625034 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 7625033 Eu³⁺ PVC Membrane Sensor Based on 1,2-Diaminopropane-N,N,N',N'-Tetraacetic Acid
Authors: Noshin Mehrabian, Mohammad Reza Abedi, Hassan Ali Zamani
Abstract:
A highly selective poly(vinyl chloride)-based membrane sensor produced by using 1,2-Diaminopropane-N,N,N',N'-tetraacetic acid (DAPTA) as active material is described. The electrode displays Nernstian behavior over the concentration range 1.0×10⁻⁶ to 1.0×10⁻² M. The detection limit of the electrode is 7.2×10⁻⁷ M. The best performance was obtained with the membrane containing 30% polyvinyl chloride (PVC), 65% nitrobenzene (NB), 2% sodium tetra phenyl borate (Na TPB), 3% DAPTA. The potentiometric response of the proposed electrode is pH independent in the range of 2.5–9.1. The proposed sensor displays a fast response time 'less than 10s'. The electrode shows a good selectivity for Eu (III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. It was used as an indicator electrode in potentiometric titration of 25 mL of a 1.0×10⁻⁴ M Eu (III) solution with a 1.0×10⁻² M EDTA solution.Keywords: potentiometry, PVC membrane, sensor, ion-selective electrode
Procedia PDF Downloads 19425032 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum
Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei
Abstract:
An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.Keywords: dislocation density, quasi-elastic release, wave profile, shock wave
Procedia PDF Downloads 28525031 First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation
Authors: Zeineb Seboui, Samar Dabbabi
Abstract:
In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices.Keywords: CZTS solar cell, characterization, electron affinity, thickness, SILVACO-atlas 2D simulation
Procedia PDF Downloads 8325030 Modeling and Simulations of Surface Plasmon Waveguide Structures
Authors: Moussa Hamdan, Abdulati Abdullah
Abstract:
This paper presents an investigation of the fabrication of the optical devices in terms of their characteristics based on the use of the electromagnetic waves. Planar waveguides are used to examine the field modes (bound modes) and the parameters required for this structure. The modifications are conducted on surface plasmons based waveguides. Simple symmetric dielectric slab structure is used and analyzed in terms of transverse electric mode (TE-Mode) and transverse magnetic mode (TM-Mode. The paper presents mathematical and numerical solutions for solving simple symmetric plasmons and provides simulations of surface plasmons for field confinement. Asymmetric TM-mode calculations for dielectric surface plasmons are also provided.Keywords: surface plasmons, optical waveguides, semiconductor lasers, refractive index, slab dialectical
Procedia PDF Downloads 30925029 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method
Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy
Abstract:
The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method
Procedia PDF Downloads 14625028 The Level of Administrative Creativity and Its Obstacles From the Point of View of Workers in Youth Centers in Jordan
Authors: Basheer Ahmad Al-Alwan
Abstract:
This study aimed to assess the extent of administrative creativity and identify its barriers from the perspective of employees working in youth centers in Jordan. The sample comprised 156 individuals employed in youth centers within the Hashemite Kingdom of Jordan. Data collection involved the utilization of two measures: the administrative creativity scale and the obstacles to administrative work scale. Correlation and stepwise multiple regression analyses were conducted. The findings revealed a high level of administrative creativity, as indicated by a mean score of 3.82 and a standard deviation of 0.51. Furthermore, statistically significant gender-based differences in administrative creativity were observed, favoring males, with a mean score of 3.32 for males compared to 2.91 for females. The results also demonstrated statistically significant differences in the level of administrative creativity based on experience, with the highest mean score observed for individuals with 5 to less than 10 years of experience. Regarding the obstacles to administrative creativity, the findings revealed an average level, with a mean score of 2.86 and a standard deviation of 0.791. Based on these results, the study recommends the promotion of a culture of creativity among employees and the provision of a broader scope of authority to foster an environment conducive to administrative creativity. Additionally, it suggests offering training courses encompassing the annual plan for these centers and minimizing obstacles that hinder the creative process among employees in Jordanian youth centers.Keywords: administrative creativity, obstacles, workers in youth centers, Jordan
Procedia PDF Downloads 9725027 Web-Based Alcohol Prevention among Iranian Medical University Students: A Randomized Control Trail
Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh
Abstract:
Background: E-interventions as a universal approach to prevent a high-risk behavior, such as alcohol drinking. This study was conducted to evaluate web-based alcohol drinking preventative intervention efficiency among medical university students in Iran. Methods: Overall, 150 freshman and sophomore male student’s college students participated in this study as intervention and control group. This was a longitudinal randomized pre- and post-test series control group design panel study to implement a behavior modification based intervention to alcohol drinking prevention among college students. Cross-tabulation, t-test, repeated measures, and GEE by using SPSS statistical package, version 21 was used for the statistical analysis. The participants were followed up for 6 months with data collection scheduled at baseline, 3 and 6 months. The primary outcomes are attitude, self-control, and sensation seeking. Furthermore, the secondary outcome is comparing alcohol drinking among the study groups. Results: It was found significant reduce in average response for an attitude towards alcohol drinking and sensation seeking among intervention group (P < 0.05). But after intervention not significant difference between intervention and control group of improve self-control and reduce alcohol drinking (P > 0.05). Conclusion: Our intervention has been accompanied with reducing alcohol use rate. These findings indicate that e-intervention may be effectiveness approach to address the alcohol prevention among college students.Keywords: e-interventions, alcohol drinking, students, Iran
Procedia PDF Downloads 41725026 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 10725025 On Confidence Intervals for the Difference between Inverse of Normal Means with Known Coefficients of Variation
Authors: Arunee Wongkhao, Suparat Niwitpong, Sa-aat Niwitpong
Abstract:
In this paper, we propose two new confidence intervals for the difference between the inverse of normal means with known coefficients of variation. One of these two confidence intervals for this problem is constructed based on the generalized confidence interval and the other confidence interval is constructed based on the closed form method of variance estimation. We examine the performance of these confidence intervals in terms of coverage probabilities and expected lengths via Monte Carlo simulation.Keywords: coverage probability, expected length, inverse of normal mean, coefficient of variation, generalized confidence interval, closed form method of variance estimation
Procedia PDF Downloads 31225024 UniFi: Universal Filter Model for Image Enhancement
Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh
Abstract:
Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.Keywords: universal filter, image enhancement, neural networks, computer vision
Procedia PDF Downloads 10825023 Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference
Authors: Nasser S. Shebka
Abstract:
Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective.Keywords: fuzzy rule-based systems, fuzzy tense inference, intelligent systems, temporal modalities
Procedia PDF Downloads 9725022 Problem Based Learning and Teaching by Example in Dimensioning of Mechanisms: Feedback
Authors: Nicolas Peyret, Sylvain Courtois, Gaël Chevallier
Abstract:
This article outlines the development of the Project Based Learning (PBL) at the level of a last year’s Bachelor’s Degree. This form of pedagogy has for objective to allow a better involving of the students from the beginning of the module. The theoretical contributions are introduced during the project to solving a technological problem. The module in question is the module of mechanical dimensioning method of Supméca a French engineering school. This school issues a Master’s Degree. While the teaching methods used in primary and secondary education are frequently renewed in France at the instigation of teachers and inspectors, higher education remains relatively traditional in its practices. Recently, some colleagues have felt the need to put the application back at the heart of their theoretical teaching. This need is induced by the difficulty of covering all the knowledge deductively before its application. It is therefore tempting to make the students 'learn by doing', even if it doesn’t cover some parts of the theoretical knowledge. The other argument that supports this type of learning is the lack of motivation the students have for the magisterial courses. The role-play allowed scenarios favoring interaction between students and teachers… However, this pedagogical form known as 'pedagogy by project' is difficult to apply in the first years of university studies because of the low level of autonomy and individual responsibility that the students have. The question of what the student actually learns from the initial program as well as the evaluation of the competences acquired by the students in this type of pedagogy also remains an open problem. Thus we propose to add to the pedagogy by project format a regressive part of interventionism by the teacher based on pedagogy by example. This pedagogical scenario is based on the cognitive load theory and Bruner's constructivist theory. It has been built by relying on the six points of the encouragement process defined by Bruner, with a concrete objective, to allow the students to go beyond the basic skills of dimensioning and allow them to acquire the more global skills of engineering. The implementation of project-based teaching coupled with pedagogy by example makes it possible to compensate for the lack of experience and autonomy of first-year students, while at the same time involving them strongly in the first few minutes of the module. In this project, students have been confronted with the real dimensioning problems and are able to understand the links and influences between parameter variations and dimensioning, an objective that we did not reach in classical teaching. It is this form of pedagogy which allows to accelerate the mastery of basic skills and so spend more time on the engineer skills namely the convergence of each dimensioning in order to obtain a validated mechanism. A self-evaluation of the project skills acquired by the students will also be presented.Keywords: Bruner's constructivist theory, mechanisms dimensioning, pedagogy by example, problem based learning
Procedia PDF Downloads 19325021 A Case Study on the Development and Application of Media Literacy Education Program Based on Circular Learning
Authors: Kim Hyekyoung, Au Yunkyung
Abstract:
As media plays an increasingly important role in our lives, the age at which media usage begins is getting younger worldwide. Particularly, young children are exposed to media at an early age, making early childhood media literacy education an essential task. However, most existing early childhood media literacy education programs focus solely on teaching children how to use media, and practical implementation and application are challenging. Therefore, this study aims to develop a play-based early childhood media literacy education program utilizing topic-based media content and explore the potential application and impact of this program on young children's media literacy learning. Based on theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perceptions of media literacy education for preschool children, this study developed a media literacy education program for preschool children, considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication). To verify the effectiveness of the program, 20 preschool children aged 5 from C City M Kindergarten were chosen as participants, and the program was implemented from March 28th to July 4th, 2022, once a week for a total of 7 sessions. The program was developed based on Gallenstain's (2003) iterative learning model (participation-exploration-explanation-extension-evaluation). To explore the quantitative changes before and after the program, a repeated measures analysis of variance was conducted, and qualitative analysis was employed to examine the observed process changes. It was found that after the application of the education program, media literacy levels such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication significantly improved. The recursive learning-based early childhood media literacy education program developed in this study can be effectively applied to young children's media literacy education and help enhance their media literacy levels. In terms of observed process changes, it was confirmed that children learned about various topics, expressed their thoughts, and improved their ability to communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can contribute to empowering young children to safely and effectively utilize media in their media environment. The results of this study, exploring the potential application and impact of the recursive learning-based early childhood media literacy education program on young children's media literacy learning, demonstrated positive changes in young children's media literacy levels. These results go beyond teaching children how to use media and can help foster their ability to safely and effectively utilize media in their media environment. Additionally, to enhance young children's media literacy levels and create a safe media environment, diverse content and methodologies are needed, and the continuous development and evaluation of education programs should be conducted.Keywords: young children, media literacy, recursive learning, education program
Procedia PDF Downloads 8125020 Economic Development Impacts of Connected and Automated Vehicles (CAV)
Authors: Rimon Rafiah
Abstract:
This paper will present a combination of two seemingly unrelated models, which are the one for estimating economic development impacts as a result of transportation investment and the other for increasing CAV penetration in order to reduce congestion. Measuring economic development impacts resulting from transportation investments is becoming more recognized around the world. Examples include the UK’s Wider Economic Benefits (WEB) model, Economic Impact Assessments in the USA, various input-output models, and additional models around the world. The economic impact model is based on WEB and is based on the following premise: investments in transportation will reduce the cost of personal travel, enabling firms to be more competitive, creating additional throughput (the same road allows more people to travel), and reducing the cost of travel of workers to a new workplace. This reduction in travel costs was estimated in out-of-pocket terms in a given localized area and was then translated into additional employment based on regional labor supply elasticity. This additional employment was conservatively assumed to be at minimum wage levels, translated into GDP terms, and from there into direct taxation (i.e., an increase in tax taken by the government). The CAV model is based on economic principles such as CAV usage, supply, and demand. Usage of CAVs can increase capacity using a variety of means – increased automation (known as Level I thru Level IV) and also by increased penetration and usage, which has been predicted to go up to 50% by 2030 according to several forecasts, with possible full conversion by 2045-2050. Several countries have passed policies and/or legislation on sales of gasoline-powered vehicles (none) starting in 2030 and later. Supply was measured via increased capacity on given infrastructure as a function of both CAV penetration and implemented technologies. The CAV model, as implemented in the USA, has shown significant savings in travel time and also in vehicle operating costs, which can be translated into economic development impacts in terms of job creation, GDP growth and salaries as well. The models have policy implications as well and can be adapted for use in Japan as well.Keywords: CAV, economic development, WEB, transport economics
Procedia PDF Downloads 7725019 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 37425018 Curriculum Check in Industrial Design, Based on Knowledge Management in Iran Universities
Authors: Maryam Mostafaee, Hassan Sadeghi Naeini, Sara Mostowfi
Abstract:
Today’s Knowledge management (KM), plays an important role in organizations. Basically, knowledge management is in the relation of using it for taking advantage of work forces in an organization for forwarding the goals and demand of that organization used at the most. The purpose of knowledge management is not only to manage existing documentation, information, and Data through an organization, but the most important part of KM is to control most important and key factor of those information and Data. For sure it is to chase the information needed for the employees in the right time of needed to take from genuine source for bringing out the best performance and result then in this matter the performance of organization will be at most of it. There are a lot of definitions over the objective of management released. Management is the science that in force the accurate knowledge with repeating to the organization to shape it and take full advantages for reaching goals and targets in the organization to be used by employees and users, but the definition of Knowledge based on Kalinz dictionary is: Facts, emotions or experiences known by man or group of people is ‘ knowledge ‘: Based on the Merriam Webster Dictionary: the act or skill of controlling and making decision about a business, department, sport team, etc, based on the Oxford Dictionary: Efficient handling of information and resources within a commercial organization, and based on the Oxford Dictionary: The art or process of designing manufactured products: the scale is a beautiful work of industrial design. When knowledge management performed executive in universities, discovery and create a new knowledge be facilitated. Make procedures between different units for knowledge exchange. College's officials and employees understand the importance of knowledge for University's success and will make more efforts to prevent the errors. In this strategy, is explored factors and affective trends and manage of it in University. In this research, Iranian universities for a time being analyzed that over usage of knowledge management, how they are behaving and having understood this matter: 1. Discovery of knowledge management in Iranian Universities, 2. Transferring exciting knowledge between faculties and unites, 3. Participate of employees for getting and using and transferring knowledge, 4.The accessibility of valid sources, 5. Researching over factors and correct processes in the university. We are pointing in some examples that we have already analyzed which is: -Enabling better and faster decision-making, -Making it easy to find relevant information and resources, -Reusing ideas, documents, and expertise, -Avoiding redundant effort. Consequence: It is found that effectiveness of knowledge management in the Industrial design field is low. Based on filled checklist by Education officials and professors in universities, and coefficient of effectiveness Calculate, knowledge management could not get the right place.Keywords: knowledge management, industrial design, educational curriculum, learning performance
Procedia PDF Downloads 37225017 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 43525016 Linkage between a Plant-based Diet and Visual Impairment: A Systematic Review and Meta-Analysis
Authors: Cristina Cirone, Katrina Cirone, Monali S. Malvankar-Mehta
Abstract:
Purpose: An increased risk of visual impairment has been observed in individuals lacking a balanced diet. The purpose of this paper is to characterize the relationship between plant-based diets and specific ocular outcomes among adults. Design: Systematic review and meta-analysis. Methods: This systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. The databases MEDLINE, EMBASE, Cochrane, and PubMed, were systematically searched up until May 27, 2021. Of the 503 articles independently screened by two reviewers, 21 were included in this review. Quality assessment and data extraction were performed by both reviewers. Meta-analysis was conducted using STATA 15.0. Fixed-effect and random-effect models were computed based on heterogeneity. Results: A total of 503 studies were identified which then underwent duplicate removal and a title and abstract screen. The remaining 61 studies underwent a full-text screen, 21 progressed to data extraction and fifteen were included in the quantitative analysis. Meta-analysis indicated that regular consumption of fish (OR = 0.70; CI: [0.62-0.79]) and skim milk, poultry, and non-meat animal products (OR = 0.70; CI: [0.61-0.79]) is positively correlated with a reduced risk of visual impairment (age-related macular degeneration, age-related maculopathy, cataract development, and central geographic atrophy) among adults. Consumption of red meat [OR = 1.41; CI: [1.07-1.86]) is associated with an increased risk of visual impairment. Conclusion: Overall, a pescatarian diet is associated with the most favorable visual outcomes among adults, while the consumption of red meat appears to negatively impact vision. Results suggest a need for more local and government-led interventions promoting a healthy and balanced diet.Keywords: plant-based diet, pescatarian diet, visual impairment, systematic review, meta-analysis
Procedia PDF Downloads 19025015 Impact of ICT on Efficient Services Providing to Users by LIPs in NCR India
Authors: Mani Gupta
Abstract:
This study deals with question: i) Whether ICT plays a positive role in improvement of efficiency of LIPs in terms of providing efficient services to the Users in LICs? and ii) Role of finance in terms of required technological logistics and infrastructure for usage of ICT based services to comfort in accessing databases by Users in LICs. This is based on primary data which are collected from various libraries and Information Centers of NCR Delhi. The survey conducted during December 15 and 31, 2010 on 496 respondents across 96 libraries and information centers in NCR Delhi through electronic data collection method. There is positive and emphatic relationship between ICT and its effect on improving the level of efficient services providing by LIPs in LICs in NCR Delhi. This is divided into 6 sub-headings and finally the outcomes.Keywords: modern globalization, linear correlation, efficient service, internet revolution, logistics
Procedia PDF Downloads 35925014 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform
Authors: Liang-Ta Cheng, Ching-Yu Yang
Abstract:
Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.Keywords: data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications
Procedia PDF Downloads 19525013 Assessment of an ICA-Based Method for Detecting the Effect of Attention in the Auditory Late Response
Authors: Siavash Mirahmadizoghi, Steven Bell, David Simpson
Abstract:
In this work a new independent component analysis (ICA) based method for noise reduction in evoked potentials is evaluated on for auditory late responses (ALR) captured with a 63-channel electroencephalogram (EEG) from 10 normal-hearing subjects. The performance of the new method is compared with a single channel alternative in terms of signal to noise ratio (SNR), the number of channels with an SNR above an empirically derived statistical critical value and an estimate of the effect of attention on the major components in the ALR waveform. The results show that the multichannel signal processing method can significantly enhance the quality of the ALR signal and also detect the effect of the attention on the ALR better than the single channel alternative.Keywords: auditory late response (ALR), attention, EEG, independent component analysis (ICA), multichannel signal processing
Procedia PDF Downloads 50625012 Bank Concentration and Industry Structure: Evidence from China
Authors: Jingjing Ye, Cijun Fan, Yan Dong
Abstract:
The development of financial sector plays an important role in shaping industrial structure. However, evidence on the micro-level channels through which this relation manifest remains relatively sparse, particularly for developing countries. In this paper, we compile an industry-by-city dataset based on manufacturing firms and registered banks in 287 Chinese cities from 1998 to 2008. Based on a difference-in-difference approach, we find the highly concentrated banking sector decreases the competitiveness of firms in each manufacturing industry. There are two main reasons: i) bank accessibility successfully fosters firm expansion within each industry, however, only for sufficiently large enterprises; ii) state-owned enterprises are favored by the banking industry in China. The results are robust after considering alternative concentration and external finance dependence measures.Keywords: bank concentration, China, difference-in-difference, industry structure
Procedia PDF Downloads 39425011 Embracing Our Scars: Self-Harm 101
Authors: Bree Wiles
Abstract:
Self-harm is still a topic that is not talked about enough, especially with the growing concern for the safety of LGBTQIA+ youth. LGBTQIA+ youth are coming out at earlier ages, thus bringing to attention the added risks for this population. Many LGBTQIA+ youth end up engaging in some form of self-destructive behavior from dealing with the stigma and negative socialization around them. Within the LGBTQIA+ youth population, self-harm alongside depression and suicide is especially common. This disparity shows the importance of providing LGBTQIA+ youth with resources that affirm their identities. As professionals and parents, it is important to understand the types of self-harm, the average age range when it can occur, causes, populations, risk factors, and self-harm in connection with mental health and suicide. It is imperative to provide protective factors for LGBTQIA+ youth in helping to replace self-harming behaviors with positive coping strategies. Helping LGBTQIA+ youth in different contexts, including from a professional, parent, and educator perspective, allows unique ways in which each can assist an LGBTQIA+ youth who is self-harming. The stigma, shame, and many misconceptions about self-harming behaviors are discussed in depth including from the lived experience of this author and professional experiences working with queer youth. Most importantly, it is imperative to know how to approach LGBTQIA+ youth who are self-harming, including how to speak in a compassionate and empathy-based framework. Clear interventions and therapeutic techniques based on evidence-based practices on alternatives to self-harm, lived experience, and previous practices with queer youth who are self-harming are provided and discussed.Keywords: LGBTQ+, mental health, self-harm, depression
Procedia PDF Downloads 5525010 Centralizing the Teaching Process in Intelligent Tutoring System Architectures
Authors: Nikolaj Troels Graf Von Malotky, Robin Nicolay, Alke Martens
Abstract:
There exist a plethora of architectures for ITSs (Intelligent Tutoring Systems). A thorough analysis and comparison of the architectures revealed, that in most cases the architecture extensions are evolutionary grown, reflecting state of the art trends of each decade. However, from the perspective of software engineering, the main aspect of an ITS has not been reflected in any of these architectures, yet. From the perspective of cognitive research, the construction of the teaching process is what makes an ITS 'intelligent' regarding the spectrum of interaction with the students. Thus, in our approach, we focus on a behavior based architecture, which is based on the main teaching processes. To create a new general architecture for ITS, we have to define the prerequisites. This paper analyzes the current state of the existing architectures and derives rules for the behavior of ITS. It is presenting a teaching process for ITSs to be used together with the architecture.Keywords: intelligent tutoring, ITS, tutoring process, system architecture, interaction process
Procedia PDF Downloads 388