Search results for: functional training
2653 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 202652 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion
Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay
Abstract:
Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.Keywords: DFT, picolinate, IR, Raman, nonlinear optic
Procedia PDF Downloads 4992651 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters
Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea
Abstract:
Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density
Procedia PDF Downloads 1602650 Current Account on Teaching Psychology and Career Psychology in Portuguese Higher Education
Authors: Sivia Amado Cordeiro, Bruna Rodrigues, Maria Do Ceu Taveira, Catia Marques, Iris Oliveira, Ana Daniela Silva, Cristina Costa-Lobo
Abstract:
This work intends to analyse the teaching of Psychology in Portugal and, particularly, the teaching of Career Psychology, reflecting about the changes that have occurred to date. Were analysed the educational offerings of 31 Portuguese higher education institutions, 12 public and 19 private, who teach the course of Psychology. The three degrees of study were considered, namely, bachelors, masters and doctoral. The analysis of the data focused on the curricular plans of the different degrees of studies in Psychology made available online by higher education institutions. Through them, we identified the curricular units with themes related to the teaching of Career Psychology. The results show the existence of 89 higher psychology courses in Portugal, distributed throughout the three degrees of studies. Concerning to the teaching of Career Psychology there were registered 49 curricular units with themes dedicated to this area of knowledge. There were identified 16 curricular units in the bachelor’s degree, 31 in master’s degree, and two in doctoral degree. It was observed a reduction in the number of degrees in Psychology in the last nine years in Portugal. We discuss the current situation of Psychology teaching, particularly the teaching of Career Psychology. The aim is to stimulate reflection about future perspectives of Psychology teaching, and specifically, specialized training in Psychology of Career, in Portugal.Keywords: career psychology, higher education, psychology, Portugal
Procedia PDF Downloads 3412649 Assessment of the Production System and Management Practices in Selected Layer Chicken Farms in Batangas, Philippines
Authors: Monette S. De Castro, Veneranda A. Magpantay, Christine B. Adiova, Mark D. Arboleda
Abstract:
One-hundred-layer chicken farmers were randomly selected and interviewed using structured questionnaires to assess the production system and management practices in layer chicken farms. The respondents belonged to the commercial scale operation. Results showed that the predominant rearing and housing systems were intensive/complete confinement and open-sided, while slatted was the common type of flooring used during the brood-grow period. Dekalb and Lohmann were the common chicken layer strains reared by farmers. The majority of commercial chicken layer farms preferred ready-to-lay (RTL) pullets as their replacement stocks. Selling was the easiest way for farmers to dispose of and utilize poultry manure, while veterinary waste and mortality were disposed of in pits. Biosecurity practices employed by the farmers conformed with the ASEAN Biosecurity Management Manual for Commercial Poultry Farming. Flies and odor were the major problems in most layer farms that are associated with their farm wastes. Therefore, the application of new technologies and husbandry practices through training and actual demonstrations could be implemented to further improve the layer chicken raising in the province.Keywords: layer chicken farms, marketing, production system, waste management
Procedia PDF Downloads 742648 Thai Perception on Bitcoin Value
Authors: Toby Gibbs, Suwaree Yordchim
Abstract:
This research analyzes factors affecting the success of Litecoin Value within Thailand and develops a guideline for self-reliance for effective business implementation. Samples in this study included 119 people through surveys. The results revealed four main factors affecting the success as follows: 1) Future Career training should be pursued in applied Litecoin development. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Litecoin within the community. 4) A great majority didn't know what Litecoin was. The guideline for self-reliance planning consisted of 4 aspects: 1) Development planning: by arranging meet up groups to conduct further education on Litecoin and share solutions on adoption into every day usage. Local communities need to develop awareness of the usefulness of Litecoin and share the value of Litecoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Litecoin within their departments. 3) Further research should be pursued on how Litecoin Value can improve business and tourism within Thailand. 4) Local communities should focus on developing Litecoin awareness by encouraging street vendors to accept Litecoin as another form of payment for services rendered.Keywords: bitcoin, cryptocurrency, decentralized, business implementation
Procedia PDF Downloads 2912647 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers
Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor
Abstract:
This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption
Procedia PDF Downloads 4862646 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 822645 Allium Cepa Extract Provides Neuroprotection Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice
Authors: Jaspal Rana, Alkem Laboratories, Baddi, Himachal Pradesh, India Chitkara University, Punjab, India
Abstract:
Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury, which may be attributed to its antioxidant properties.Keywords: stroke, neuroprotection, ischemia reperfusion, herbal drugs
Procedia PDF Downloads 1062644 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 1842643 Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide
Authors: D. J. Kalita
Abstract:
Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour.Keywords: cancer, cationic peptide, host defense peptides, Breast cancer genes
Procedia PDF Downloads 902642 The Impact of Blended Learning on the Perception of High School Learners Towards Entrepreneurship
Authors: Rylyne Mande Nchu, Robertson Tengeh, Chux Iwu
Abstract:
Blended learning is a global phenomenon and is essential to many institutes of learning as an additional method of teaching that complements more traditional methods of learning. In this paper, the lack of practice of a blended learning approach to entrepreneurship education and how it impacts learners' perception of being entrepreneurial. E-learning is in its infancy within the secondary and high school sectors in South Africa. The conceptual framework of the study is based on theoretical aspects of systemic-constructivist learning implemented in an interactive online learning environment in an entrepreneurship education subject. The formative evaluation research was conducted implementing mixed methods of research (quantitative and qualitative) and it comprised a survey of high school learners and informant interviewing with entrepreneurs. Theoretical analysis of literature provides features necessary for creating interactive blended learning environments to be used in entrepreneurship education subject. Findings of the study show that learners do not always objectively evaluate their capacities. Special attention has to be paid to the development of learners’ computer literacy as well as to the activities that would bring online learning to practical training. Needs analysis shows that incorporating blended learning in entrepreneurship education may have a positive perception of entrepreneurship.Keywords: blended learning, entrepreneurship education, entrepreneurship intention, entrepreneurial skills
Procedia PDF Downloads 1122641 Enhancing Development through Music: Insights from the Tehran Conservatory’s Program for Children with Autism Spectrum Disorder
Authors: Ailin Agaahi, Nafise Daneshvar Hoseini, Shahnaz Tamizi, Mehrdad Sabet
Abstract:
This study investigates the impact of the Tehran Conservatory's music program on children with autism spectrum disorder (ASD) and their families. Recognizing music education as a beneficial therapeutic intervention, the research highlights how engagement in musical activities can foster cognitive, emotional, and social growth. Through qualitative interviews with parents of children enrolled in the program, the study explores their motivations for participation, observations of their children's progress, and assessments of the program's effectiveness. Preliminary findings indicate that the program significantly enhances social interaction, emotional regulation, and communication skills in children with ASD. Parents appreciate the program's adaptability to individual needs and the supportive training of instructors. Despite these positive outcomes, the study identifies challenges, including a lack of awareness and limited access to similar programs. The findings contribute valuable perspectives to the existing literature and suggest pathways for developing more inclusive music education initiatives, both in Iran and globally, to better support children with ASD and their families.Keywords: autism spectrum disorder, music education, therapeutic intervention, parental perspectives, social interaction
Procedia PDF Downloads 192640 The Successful Implementation of Management Accounting Innovations (MAIs) within Jordanian Industrial Sector Using Cross-Case Analysis
Authors: Mahmoud Nassar
Abstract:
This paper was designed for interviews with companies that had implemented Management Accounting Innovations (MAIs) within Jordanian Industrial Sector in full. Each company in this paper was examined as an entity to obtain an understanding of the process of MAIs adoption and implementation as well as the respondents’ opinions and perspectives of each individual company as to what are considered to be the important factors in the company. By firstly using within-case analysis has the potential to aid in-depth views of the issues and their impact on each particular company. Then, cross-case analysis was used to analyse the similarities and differences of the six companies. The study concludes that, the six companies interviewed gradually moved to using MAIs over the last ten years. The length of time required to implement the MAIs varied across the companies. Interviewees revealed several factors from both the demand and supply side that influence implementation of MAIs within the Jordanian industrial companies. Respondents mentioned and emphasised the important effect of the following factors: top management support, education about ABC concept and benefits, training programmes, shortcoming of existing cost system, competition, size of company, professional accounting bodies, management accounting journals, management accounting research and PhD degrees, and cooperation between universities and companies.Keywords: industrial sector, innovations, Jordan, management accounting
Procedia PDF Downloads 3702639 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation
Abstract:
Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient
Procedia PDF Downloads 1692638 Person-Centered Thinking as a Fundamental Approach to Improve Quality of Life
Authors: Christiane H. Kellner, Sarah Reker
Abstract:
The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centred design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like centre in Schönbrunn - a large residential complex and service provider for persons with disabilities in the outskirts of Munich - will be remodelled to open up the community to all people as well as transform social space. This strategy should lead to more equal opportunities and open the way for a much more diverse community. The research project “Index for participation development and quality of life for persons with disabilities” (TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at the Franziskuswerk Schönbrunn supports this transformation process called “Vision 2030”. In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees using person-centred planning). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one sub-project more in-depth, namely “The Person-Centred Think Tank” [Arbeitskreis Personenzentriertes Denken; PZD]. In the context of person-centred thinking (PCT), persons with disabilities are encouraged to (re)gain or retain control of their lives through the development of new choice options and the validation of individual lifestyles. PCT should thus foster and support both participation and quality of life. The project aims to establish PCT as a fundamental approach for both employees and persons with disabilities in the institution through in-house training for the staff and, subsequently, training for users. Hence, for the academic support and supervision team, the questions arising from this venture can be summed up as follows: (1) has PCT already gained a foothold at the Franziskuswerk Schönbrunn? And (2) how does it affect the interaction with persons with disabilities and how does it influence the latter’s everyday life? According to the holistic approach described above, the target groups for this study are both the staff and the users of the institution. Initially, we planned to implement the group discussion method for both target-groups. However, in the course of a pretest with persons with intellectual disabilities, it became clear that this type of interview, with hardly any external structuring, provided only limited feedback. In contrast, when the discussions were moderated, there was more interaction and dialogue between the interlocutors. Therefore, for this target-group, we introduced structured group interviews. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. We analysed and evaluated the group interviews and discussions with the help of qualitative content analysis according to Mayring in order to obtain information about users’ quality of life. We sorted out the statements relating to quality of life obtained during the group interviews into three dimensions: subjective wellbeing, self-determination and participation. Nevertheless, the majority of statements were related to subjective wellbeing and self-determination. Thus, especially the limited feedback on participation clearly demonstrates that the lives of most users do not take place beyond the confines of the institution. A number of statements highlighted the fact that PCT is anchored in the everyday interactions within the groups. However, the implementation and fostering of PCT on a broader level could not be detected and thus remain further aims of the project. The additional interviews we have planned should validate the results obtained until now and open up new perspectives.Keywords: person-centered thinking, research with persons with disabilities, residential complex and service provider, participation, self-determination.
Procedia PDF Downloads 3232637 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 822636 An Analysis of Digital Forensic Laboratory Development among Malaysia’s Law Enforcement Agencies
Authors: Sarah K. Taylor, Miratun M. Saharuddin, Zabri A. Talib
Abstract:
Cybercrime is on the rise, and yet many Law Enforcement Agencies (LEAs) in Malaysia have no Digital Forensics Laboratory (DFL) to assist them in the attrition and analysis of digital evidence. From the estimated number of 30 LEAs in Malaysia, sadly, only eight of them owned a DFL. All of the DFLs are concentrated in the capital of Malaysia and none at the state level. LEAs are still depending on the national DFL (CyberSecurity Malaysia) even for simple and straightforward cases. A survey was conducted among LEAs in Malaysia owning a DFL to understand their history of establishing the DFL, the challenges that they faced and the significance of the DFL to their case investigation. The results showed that the while some LEAs faced no challenge in establishing a DFL, some of them took seven to 10 years to do so. The reason was due to the difficulty in convincing their management because of the high costs involved. The results also revealed that with the establishment of a DFL, LEAs were better able to get faster forensic result and to meet agency’s timeline expectation. It is also found that LEAs were also able to get more meaningful forensic results on cases that require niche expertise, compared to sending off cases to the national DFL. Other than that, cases are getting more complex, and hence, a continuous stream of budget for equipment and training is inevitable. The result derived from the study is hoped to be used by other LEAs in justifying to their management the benefits of establishing an in-house DFL.Keywords: digital evidence, digital forensics, digital forensics laboratory, law enforcement agency
Procedia PDF Downloads 1762635 Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils
Authors: Elad Arad, Raz Jelinek, Hanna Rapaport
Abstract:
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications.Keywords: titanium dioxide, amyloids, photothermal treatment, catechol, Congo-red
Procedia PDF Downloads 1462634 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1532633 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 5482632 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4472631 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 1962630 One-Shot Text Classification with Multilingual-BERT
Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao
Abstract:
Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.Keywords: OSML, BERT, text classification, one shot
Procedia PDF Downloads 1012629 Development and Validation of the 'Short Form BASIC Scale' Psychotic Tendencies Subscale
Authors: Chia-Chun Wu, Ying-Yao Cheng
Abstract:
The purpose of this study was developing the 'short-form BASIC scale' psychotic tendencies subscale so as to provide a more efficient, economical and effective way to assess the mental health of recruits. 1749 students from Naval Recruit Training Center participated in this study. The multidimensional constructs of psychotic tendencies subscale include four dimensions: schizophrenic tendencies, manic tendencies, depression tendencies, and suicidal ideation. We cut down the 36-item psychotic tendencies subscale to 25 items by using multidimension Rasch techniques. They were applied to assess model-data fit and to provide the validity evidence of the short form BASIC scale of psychotic tendencies subscale. The person separation reliabilities of the measures from four dimensions were .70, .67, .74 and .57, respectively. In addition, there is a notable correlation between the length version and short version of schizophrenic tendencies (scaled .89), manic tendencies (.96), depression tendencies (.97) and suicidal ideation (.97). The results have indicated that the development of the study of short-form scale sufficient to replace the original scale. Therefore, it is suggested that short-form basic scale is used to assess the mental health with participants being more willing to answer questions to ensure the validation of assessments.Keywords: BASIC scale, military, Rasch analysis, short-form scale
Procedia PDF Downloads 3612628 Evaluation of Patients' Satisfaction Aspects in Governmental Egyptian Emergency Departments
Authors: N. Rashed, Z. Aysha, M. Fakher
Abstract:
Patient satisfaction is one of the core objectives of health care facilities. It is difficult to evaluate patients response in the emergency setting. The current study aimed to evaluate patients and family aspects of satisfaction in both adult and pediatric emergency departments and their recommendations for improvement. Cross-section survey(Brief Emergency department Patient Satisfaction Scale (BEPSS), was translated and validated, then performed to evaluate patients satisfaction in two governmental hospitals Emergency departments. Three hundred patients and their families were enrolled in the study. The waiting time in the adult Emergency department ranged from (5 minutes to 120 minutes), and most admissions were at the morning shift while at the pediatric hospital the waiting time ranged from 5 minutes to 100 minutes) and most admissions were at the afternoon shift. The results showed that the main domain of satisfaction in BEPSS in the adult emergency department was respecting the patients family while in the pediatric emergency department, the main domain was the nursing care about treatment. The main recommendation of improvement in pediatric Emergency Department was modifying the procedures while in adult Emergency Department was improving the training of physicians.Keywords: emergency, department-patient, satisfaction-adult-pediatric
Procedia PDF Downloads 1442627 Production of Soy Yoghurt Using Soymilk-Based Lactic Acid Bacteria as Starter Culture
Authors: Ayobami Solomon Popoola, Victor N. Enujiugha
Abstract:
Production of soy-yogurt by fermentation of soymilk with lactic acid bacteria isolated from soymilk was studied. Soymilk was extracted from dehulled soybean seeds and pasteurized at 95 °C for 15 min. The soymilk was left to naturally ferment (temperature 40 °C; time 8 h) and lactic acid bacteria were isolated, screened and selected for yogurt production. Freshly prepared soymilk was pasteurized (95 °C, 15 min), inoculated with the lactic acid bacteria isolated (3% w/v starter culture) and incubated at 40 °C for 8 h. The yogurt produced was stored at 4 °C. Investigations were carried out with the aim of improving the sensory qualities and acceptability of soy yogurt. Commercial yogurt was used as a control. The percentage of soymilk inoculated was 70% of the broth. Soy-yoghurt samples produced were subsequently subjected to biochemical and microbiological assays which included total viable counts of fresh milk and soy-based yoghurt; proximate composition of functional soy-based yoghurt fermented with Lactobacillus plantarum; changes in pH, Titratable acidity, and lactic acid bacteria during a 14 day period of storage; as well as morphological and biochemical characteristics of lactic acid bacteria isolated. The results demonstrated that using Lactobacillus plantarum to inoculate soy milk for yogurt production takes about 8 h. The overall acceptability of the soy-based yogurt produced was not significantly different from that of the control sample. The use of isolate from soymilk had the added advantage of reducing the cost of yogurt starter culture, thereby making soy-yogurt, a good source of much desired good quality protein. However, more experiments are needed to improve the sensory qualities such as beany or astringent flavor and color.Keywords: soy, soymilk, yoghurt, starter culture
Procedia PDF Downloads 2632626 Appraisal of Incentive Schemes for Employees: A Case of Construction Smes
Authors: B. M. Arthur-Aidoo, C. O. Aigbavboa, W. D. Thwala
Abstract:
The performance of construction employees cannot be underestimated if the success of construction projects are to be achieved. This is because the construction industry has been characterised as labour oriented sector, which most of its activities being executed by labour. In the construction sector, employees are driven by incentive schemes which perform encourage and motivate workers for higher efficiency and higher output. The construction sector, however, depends mainly on its labour. In view of the sector's high dependency on its employees, that there must be a significant incentive scheme which must be established to act as a stimulus to drive high performance from employees among the various known incentive packages. This study, therefore, seeks to appraise the incentive packages adopted by construction SMEs. To establish reliable findings that will contribute to knowledge, the study utilised an exploratory approach via semi-structured interviews among sampled construction professionals with the requisite expertise on employees' incentive schemes. The study further established that although incentive schemes are classified in various ways and mediums that act as stimuli to encourage high performance among employees, some are more influential and impacts performance than others. Additionally, the study concludes that medical allowance, holiday with pay, free working tools, and training for employees were ranked the most influential incentives that promote high outputs by workers within the construction SME sector.Keywords: appraisal, construction, employees, incentive, small and medium-sized enterprises, SMEs
Procedia PDF Downloads 1372625 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development
Authors: Ananchai Ukaew, Choopong Chauypen
Abstract:
Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system
Procedia PDF Downloads 3492624 Task Validity in Neuroimaging Studies: Perspectives from Applied Linguistics
Authors: L. Freeborn
Abstract:
Recent years have seen an increasing number of neuroimaging studies related to language learning as imaging techniques such as fMRI and EEG have become more widely accessible to researchers. By using a variety of structural and functional neuroimaging techniques, these studies have already made considerable progress in terms of our understanding of neural networks and processing related to first and second language acquisition. However, the methodological designs employed in neuroimaging studies to test language learning have been questioned by applied linguists working within the field of second language acquisition (SLA). One of the major criticisms is that tasks designed to measure language learning gains rarely have a communicative function, and seldom assess learners’ ability to use the language in authentic situations. This brings the validity of many neuroimaging tasks into question. The fundamental reason why people learn a language is to communicate, and it is well-known that both first and second language proficiency are developed through meaningful social interaction. With this in mind, the SLA field is in agreement that second language acquisition and proficiency should be measured through learners’ ability to communicate in authentic real-life situations. Whilst authenticity is not always possible to achieve in a classroom environment, the importance of task authenticity should be reflected in the design of language assessments, teaching materials, and curricula. Tasks that bear little relation to how language is used in real-life situations can be considered to lack construct validity. This paper first describes the typical tasks used in neuroimaging studies to measure language gains and proficiency, then analyses to what extent these tasks can validly assess these constructs.Keywords: neuroimaging studies, research design, second language acquisition, task validity
Procedia PDF Downloads 138