Search results for: statistical estimation problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12430

Search results for: statistical estimation problem

8410 A Goal-Oriented Approach for Supporting Input/Output Factor Determination in the Regulation of Brazilian Electricity Transmission

Authors: Bruno de Almeida Vilela, Heinz Ahn, Ana Lúcia Miranda Lopes, Marcelo Azevedo Costa

Abstract:

Benchmarking public utilities such as transmission system operators (TSOs) is one of the main strategies employed by regulators in order to fix monopolistic companies’ revenues. Since 2007 the Brazilian regulator has been utilizing Data Envelopment Analysis (DEA) to benchmark TSOs. Despite the application of DEA to improve the transmission sector’s efficiency, some problems can be pointed out, such as the high price of electricity in Brazil; the limitation of the benchmarking only to operational expenses (OPEX); the absence of variables that represent the outcomes of the transmission service; and the presence of extremely low and high efficiencies. As an alternative to the current concept of benchmarking the Brazilian regulator uses, we propose a goal-oriented approach. Our proposal supports input/output selection by taking traditional organizational goals and measures as a basis for the selection of factors for benchmarking purposes. As the main advantage, it resolves the classical DEA problems of input/output selection, undesirable and dual-role factors. We also provide a demonstration of our goal-oriented concept regarding service quality. As a result, most TSOs’ efficiencies in Brazil might improve when considering quality as important in their efficiency estimation.

Keywords: decision making, goal-oriented benchmarking, input/output factor determination, TSO regulation

Procedia PDF Downloads 200
8409 Financial Instrument with High Investment Risk on the Warsaw Stock Exchange

Authors: Piotr Prewysz-Kwinto

Abstract:

The market of financial instruments with high risk is developing very dynamically in recent years and attracts more and more interest of investors. It consists essentially of two groups of instruments, i.e. derivatives and exchange traded product (ETP), and each year new types are introduced and offered to investors. The aim of this paper is to present the principles concerning financial instruments with high investment risk available on the Warsaw Stock Exchange (WSE), because they have quite complex constructions, and to evaluate the development of this market. In order to achieve this aim, statistical data from 2014-2016 was analyzed. The results confirm that the financial instruments with high investment risk available on the WSE constitute a diversified and the most numerous group of financial instruments and attract the most interest of investors. Responsible investing requires, however, a good knowledge of how they work and how they can generate profit to not expose oneself to unexpected losses.

Keywords: derivatives, exchange traded products (ETP), financial instruments, financial market, risk, stock exchange

Procedia PDF Downloads 383
8408 Impact of Work and Family Conflict on Employee Self Esteem

Authors: Romana P. Khokhar

Abstract:

The purpose of this study was to explore the impact of work-family conflict on self-esteem. On the basis of the literature reviewed, it was hypothesized that 1) work-family conflict has an impact on self- esteem, 2). There would be a gender difference on the variable of work family conflict. Data for this study was taken from a sample of 70 employees within the banking industry since this industry is generally associated with higher levels of work-family conflict. Statistical tests performed were regression and t-test. Self-esteem was assessed with the 10-item Rosenberg Self-Esteem Scale (RSE; Rosenberg, 1965) and Work-Family Conflict Scale (WFCS; Netemeyer, R. G., Boles, J. S., & McMurrian, R. 1996) was used to assess the level of work –family conflict. The results indicated that an increase in work-family conflict resulted in lower self-esteem due to the various pressures evidenced in a complicated network of direct and indirect influences. It was also determined that there is less effect of work-family conflict on the female workers, as opposed to the male population, leading to the conclusion that in the case of the female workers the impact on self-esteem was not significant.

Keywords: work and family conflict, self-esteem, employee

Procedia PDF Downloads 504
8407 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 469
8406 Using Multi-Level Analysis to Identify Future Trends in Small Device Digital Communication Examinations

Authors: Mark A. Spooner

Abstract:

The growth of technological advances in the digital communications industry has dictated the way forensic examination laboratories receive, analyze, and report on digital evidence. This study looks at the trends in a medium sized digital forensics lab that examines small communications devices (i.e., cellular telephones, tablets, thumb drives, etc.) over the past five years. As law enforcement and homeland security organizations budgets shrink, many agencies are being asked to perform more examinations with less resources available. Using multi-level statistical analysis using five years of examination data, this research shows the increasing technological demand trend. The research then extrapolates the current data into the model created and finds a continued exponential growth curve of said demands is well within the parameters defined earlier on in the research.

Keywords: digital forensics, forensic examination, small device, trends

Procedia PDF Downloads 203
8405 Measuring Fundamental Growth Needs in a Youth Boatbuilding Context

Authors: Shane Theunissen, Rob Grandy

Abstract:

Historically and we would fairly conventionally within our formal schooling systems, we have convergent testing where all the students are expected to converge on the same answer, and that answer has been determined by an external authority that is reproducing knowledge of the hegemon. Many youths may not embody the cultural capital that's rewarded in formal schooling contexts as they aren't able to converge on the required answer that's being determined by the classroom teacher or the administrators. In this paper, we explore divergent processes that promote creative problem-solving. We embody this divergent process in our measurement of fundamental growth needs. To this end, we utilize the Mosaic Approach as a method for implementing the Outcomes That Matter framework. Outcomes That Matter is the name of the measurement tool built around the Circle of Courage framework, which is a way of identifying fundamental growth needs for young people. The Circle of Courage was developed by Martin-Broken-Leg and colleagues as a way to connect indigenous child-rearing philosophies with contemporary resilience and positive psychology research. The Outcomes that Matter framework puts forward four categories of growth needs for young people. These are: Belonging, which on a macro scale is acceptance into the greater community of practice, Mastery which includes a constellation of concepts including confidence, motivation, self-actualization, and self-determination, Independence refers to a sense of personal power into autonomy within a context where creativity and problem solving, and a personal voice can begin to emerge, and finally Generosity which includes interpersonal things like conflict resolution and teamwork. Outcomes of Matter puts these four domains into a measurement tool that facilitates collaborative assessment between the youth, teachers, and recreation therapists that allows for youth-led narratives pertaining to their fundamental growth outcomes. This application of the Outcomes That Matter framework is unique as it may be the first application of this framework in an educational boatbuilding context.

Keywords: collaboration, empowerment, outcomes that matter, mosaic approach, boat building

Procedia PDF Downloads 102
8404 Towards a Smart Irrigation System Based on Wireless Sensor Networks

Authors: Loubna Hamami, Bouchaib Nassereddine

Abstract:

Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.

Keywords: precision irrigation, sensor, wireless sensor networks, water resources

Procedia PDF Downloads 157
8403 Implications of Climate Change and World Uncertainty for Gender Inequality: Global Evidence

Authors: Kashif Nesar Rather, Mantu Kumar Mahalik

Abstract:

The discourse surrounding climate change has gained considerable traction, with a discernible emphasis on its nuanced and consequential impact on gender inequality. Concurrently, escalating global tensions are contributing to heightened uncertainty, potentially exerting influence on gender disparities. Within this framework, this study attempts to empirically investigate the implications of climate change and world uncertainty on the gender inequality for a balanced panel of 100 economies between 1995 to 2021. The estimated models also control for the effects of globalisation, economic growth, and education expenditure. The panel cointegration tests establish a significant long-run relationship between the variables of the study. Furthermore, the PMG-ARDL (Panel mean group-Autoregressive distributed lag model) estimation technique confirms that both climate change and world uncertainty perpetuate the global gender inequalities. Additionally, the results establish that globalisation, economic growth, and education expenditure exert a mitigating influence on gender inequality, signifying their role in diminishing gender disparities. These findings are further confirmed by the FGLS (Feasible Generalized Least Squares) and DKSE (Driscoll-Kraay Standard Errors) regression methods. Potential policy implications for mitigating the detrimental gender ramifications stemming from climate change and rising world uncertainties are also discussed.

Keywords: gender inequality, world uncertainty, climate change, globalisation., ecological footprint

Procedia PDF Downloads 43
8402 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 186
8401 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 642
8400 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM fraud, e-banking, prototyping

Procedia PDF Downloads 329
8399 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 136
8398 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions

Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.

Keywords: ulexite, sodium dihydrogen phosphate, leaching kinetics, boron

Procedia PDF Downloads 312
8397 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields

Authors: Bing-Bing E. Goh

Abstract:

Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.

Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis

Procedia PDF Downloads 166
8396 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil

Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi

Abstract:

Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.

Keywords: heavy metals, spectroscopy, spectral bands, PLS regression

Procedia PDF Downloads 89
8395 Challenges of Water License in Agriculture Sector in British Columbia: An Exploratory Sociological Inquiry

Authors: Mandana Karimi, Martha McMahon

Abstract:

One of the most important consequences of water scarcity worldwide is the increase in conflicts over water issues, reduced access to clean water, food shortages, energy shortages, and reduced economic development. The extreme weather conditions in British Columbia are because of climate change, which is leading to water scarcity becoming a serious issue affecting British Columbians, aquatic ecosystems, the BC water policy, agriculture, and the economy. In light of climate change and water stress, the British Columbia government introduced a new water legislation in 2016 named the Water Sustainability Act to manage water resources in British Columbia. So, this study aimed to present a deep understanding emanating from the political and social dimensions of the new water policy in BC in the agriculture sector and which sociological paradigm governs the current water policy (WSA) in BC. Policy analysis based on the water problem representation approach was used to present the problem and solutions identified by the water policy in the agricultural sector in BC. The results of the policy analysis highlighted that the Water Sustainability Act is governed by a positivist and modernist approach because the groundwater license is the measurable situation to access the adequate quantity of water for the farmers. In addition, by the positivist paradigm water resources are conceptualized as a commodity to be bought and sold. Under the positivist approach, the measurable parameter of groundwater is also applied based on the top-down approach for water management to show the use of water resources for economic development. In addition, the findings of the policy analysis suggest that alternative paradigms, such as relational ontology, ecofeminism, and indigenous knowledge, could be applied in introducing water policies to shift from the positivist or modernist paradigm. These new paradigms present the potential for environmental policies like the Water Sustainability Act, based on partnership, and collaboration and with an explicit emphasis on protecting water for nature.

Keywords: water governance, Water Sustainability Act, water policy, small-scale farmer, policy analysis

Procedia PDF Downloads 79
8394 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 352
8393 The Study of Elders’ Needs in Bangkok Metropolis for the Options of Health Tourism

Authors: Chantouch Wannathanom

Abstract:

Research The study of elders’ needs in Bangkok metropolis for the options of health tourism. The objective is to study of elders’ needs in Bangkok Metropolis for the options of health tourism. The research her collected data using a questionnaire. The samples used in this research is elderly people living in the Dusit area. Of 400 people found the majority were female than male. Accounted for18 percent aged between 50-55 years, mostly undergraduate degree. Moreover, most seniors do not have underlying disease. The study found that 1. Elders’ needs in Bangkok Metropolis for the options of health tourism; 2. Tourism activity patterns that fit elderly was divided into 5 categories, including massage, massage, and herbal sauna. Practicing meditation and ascetic. The results showed that selection of elderly tourist activities by choosing healthy eating are the first. The hypothesis testing period: Elders’ needs in Bangkok Metropolis for the options of health tourism is different. The level of statistical significance .05 level.

Keywords: needs, elder, health tourism, Bangkok

Procedia PDF Downloads 360
8392 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: dynamic equation, downscaling, inverse distance, weight interpolation

Procedia PDF Downloads 309
8391 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers

Procedia PDF Downloads 717
8390 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest

Procedia PDF Downloads 193
8389 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation

Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo

Abstract:

This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.

Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology

Procedia PDF Downloads 82
8388 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 152
8387 Covalent Binding of Cysteine to a Sol-Gel Material for Cadmium Biosorption from Aqueous Solutions

Authors: Claudiu Marcu, Cristina Paul, Adelina Andelescu, Corneliu Mircea Davidescu, Francisc Péter

Abstract:

Heavy metal pollution has become a more serious environmental problem in the last several decades as a result of its toxicity and insusceptibility to the environment. Methods for removing metal ions from aqueous solution mainly consist of physical, chemical and biochemical procedures. Biosorption is defined as the removal of metal or metalloid species, compounds and particulates from solution by a biological material. Biosorption represents a very attractive method for the removal of toxic metal ions from aqueous effluents because it uses the ability of various biomass to bind the metal ions without the risk of releasing other toxic chemical compounds into the environment. The problem with using biomass or living cells as biosorbents is that their regeneration/reuse is often either impossible or very laborious. One of the most common chelating group found in biosorbents is the thiol group in cysteine. Therefore, we immobilized cysteine using covalent binding using glutaraldehyde as a linker on a synthetic sol-gel support obtained using 3-amino-propyl-trimetoxysilane and trimetoxysilane as precursors. The obtained adsorbents were used for removal of cadmium from aqueous solutions and the removal capacity was investigated in relation to the composition of the sol-gel hybrid composite, the loading of the biomolecule and the physical parameters of the biosorption process. In the same conditions, the bare sol-gel support without cysteine had no Cd removal effect, while the adsorbent with cysteine had an adsorption capacity up to 25.8 mg Cd/g adsorbent at pH 2.0 and 119 mg Cd/g adsorbent at pH 6.6, depending on cadmium concentration and adsorption conditions. We used atomic adsorption spectrometry to assess the cadmium concentration in the samples after the biosorbtion process. The parameters for the Freundlich and Langmuir adsorption isotherms where calculated from plotting the results of the adsorption experiments. The results for cysteine immobilization show a good loading capacity of the sol-gel support which indicates it could be used to immobilize metal binding proteins and by doing so boosting the heavy metal adsorption capacity of the biosorbent.

Keywords: biosorbtion, cadmium, cysteine covalent binding, sol-gel

Procedia PDF Downloads 295
8386 Understanding Loc Trade in Kashmir: References of Global Episodes in Arena of Economy and Confidence Building Measure

Authors: Aarushi Baloria, Joshina Jamwal

Abstract:

The paper attempts to understand the genesis of the Kashmir conflict, the LoC trade, and the various challenges which impede LoC trade. The paper further understands how this trade assists in mitigating tension between the countries and act as a conference building measure (CBM). The paper discusses later on the positive aspects of LoC trade with the help of statistical data like increase in state's economy along with negatives like smuggling of arms, drugs, swapping and interchanging of Hawala money and other unconstitutional activities like terrorism that took place on trade points across LoC. Moreover, the paper also mentioned in the international context; the episodes of Ireland of Europe, Palestine of Middle East, Uganda of Africa not only as transaction step but also as a peace channel between the fragmented parts. Thus, the paper, in a nutshell, reflects how the trade across LoC benefited in various psychological, economic, and political reasons, and it is worth taking risk, taking its overall positive things into consideration.

Keywords: drugs, economy, international, peace, psychological, trade

Procedia PDF Downloads 140
8385 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 122
8384 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 341
8383 Purpose-Driven Collaborative Strategic Learning

Authors: Mingyan Hong, Shuozhao Hou

Abstract:

Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.

Keywords: collaborative, strategic, optimal input, second language acquisition

Procedia PDF Downloads 131
8382 Children's Literature and the Study of the Sociological Approach

Authors: Sulmaz Mozaffari, Zahra Mozaffari, Saman Mozaffari

Abstract:

Man has always tried to find the Ideal place for life and he has experienced a lot of problems. So many internal and external limits has been on his way. Today man is threatened by so many crisis because of his specific look to the world. Literature as a universal science has not ignored this problem either. Children's literature has tried to present the social, cultural, religious and economical problems in tales and novels. This research tries to analyse social and cultural problems related to 10th century children from social point of criticism.

Keywords: social criticism, crisis, children's literature, tale

Procedia PDF Downloads 484
8381 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply

Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele

Abstract:

In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.

Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant

Procedia PDF Downloads 183