Search results for: leadership models
3689 Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting
Authors: Armin Rahmatfam, Mohammad Zehsaz, Farid Vakili Tahami, Nasser Ghassembaglou
Abstract:
In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented.Keywords: combined hardening model, kinematic hardening, isotropic hardening, cyclic tests
Procedia PDF Downloads 4803688 Neuro-Connectivity Analysis Using Abide Data in Autism Study
Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha
Abstract:
Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model
Procedia PDF Downloads 2913687 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures
Authors: Chiara Cesali
Abstract:
The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.Keywords: climate change, hydraulic design, precipitation, railway
Procedia PDF Downloads 1823686 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery
Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft
Abstract:
Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics
Procedia PDF Downloads 5693685 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities
Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho
Abstract:
Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.Keywords: spatial panel, specification, splm, agricultural productivity growth
Procedia PDF Downloads 1733684 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 1253683 Predicting National Football League (NFL) Match with Score-Based System
Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor
Abstract:
This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.Keywords: game prediction, NFL, football, artificial neural network
Procedia PDF Downloads 853682 The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia
Authors: Wong Hock Tsen
Abstract:
This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia.Keywords: exchange rate volatility, autoregressive distributed lag, export, Malaysia
Procedia PDF Downloads 3263681 Cadmium Separation from Aqueous Solutions by Natural Biosorbents
Authors: Z. V. P. Murthy, Preeti Arunachalam, Sangeeta Balram
Abstract:
Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging.Keywords: chitin, chitosan, cadmium, isotherm, kinetics
Procedia PDF Downloads 4123680 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 3233679 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry
Authors: Dominik Halstrup, Marlene Schriever
Abstract:
The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry
Procedia PDF Downloads 2253678 Strategies for the Oral Delivery of Oligonucleotides
Authors: Venkat Garigapati
Abstract:
To date, more than a dozen oligonucleotide products are approved as injectable products for clinical use. However, there is no single oligo nucleotide product approved for clinical use. Oral delivery of oligo nucleotides is patient friendly administration however, many challenges involved in the development of oral formulation. Over the course of last twenty plus years, the research in this space aimed to address these challenges. This paper describes the issues involved in solubility, stability, enzymatic (nuclease) induced degradation, and permeation of nucleotides in the Gastrointestinal (GI) and how to overcome these challenges. Also, the translation of in vitro data to in vivo models hinders the formulation development. This paper describes the challenges involved in the development of Oligo Nucleotide products for oral administration. It also discusses the chemistry and formulation strategies for oral administration of oligonucleotides.Keywords: oral adminstration, oligo nucleotides, stability, permeation, gastrointestinal tract
Procedia PDF Downloads 883677 The Galactic Magnetic Field in the Light of Starburst-Generated Ultrahigh-Energy Cosmic Rays
Authors: Luis A. Anchordoqui, Jorge F. Soriano, Diego F. Torres
Abstract:
Auger data show evidence for a correlation between ultrahigh-energy cosmic rays (UHECRs) and nearby starburst galaxies. This intriguing correlation is consistent with data collected by the Telescope Array, which have revealed a much more pronounced directional 'hot spot' in arrival directions not far from the starburst galaxy M82. In this work, we assume starbursts are sources of UHECRs, and we investigate the prospects to use the observed distribution of UHECR arrival directions to constrain galactic magnetic field models. We show that if the Telescope Array hot spot indeed originates on M82, UHECR data would place a strong constraint on the turbulent component of the galactic magnetic field.Keywords: galactic magnetic field, Pierre Auger observatory, telescope array, ultra-high energy cosmic rays
Procedia PDF Downloads 1513676 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 233675 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room
Authors: Nguyen Van Que, Nguyen Huy The
Abstract:
This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions
Procedia PDF Downloads 3333674 A False Introduction: Teaching in a Pandemic
Authors: Robert Michael, Kayla Tobin, William Foster, Rachel Fairchild
Abstract:
The COVID-19 pandemic has caused significant disruptions in education, particularly in the teaching of health and physical education (HPE). This study examined a cohort of teachers that experienced being a preservice and first-year teacher during various stages of the pandemic. Qualitative data collection was conducted by interviewing six teachers from different schools in the Eastern U.S. over a series of structured interviews. Thematic analysis was employed to analyze the data. The pandemic significantly impacted the way HPE was taught as schools shifted to virtual and hybrid models. Findings revealed five major themes: (a) You want me to teach HOW?, (b) PE without equipment and six feet apart, (c) Behind the Scenes, (d) They’re back…I became a behavior management guru, and (e) The Pandemic Crater. Overall, this study highlights the significant challenges faced by preservice and first-year teachers in teaching physical education during the pandemic and underscores the need for ongoing support and resources to help them adapt and succeed in these challenging circumstances.Keywords: teacher education, preservice teachers, first year teachers, health and physical education
Procedia PDF Downloads 1923673 Necessity for a Standardized Occupational Health and Safety Management System: An Exploratory Study from the Danish Offshore Wind Sector
Authors: Dewan Ahsan
Abstract:
Denmark is well ahead in generating electricity from renewable sources. The offshore wind sector is playing the pivotal role to achieve this target. Though there is a rapid growth of offshore wind sector in Denmark, still there is a dearth of synchronization in OHS (occupational health and safety) regulation and standards. Therefore, this paper attempts to ascertain: i) what are the major challenges of the company specific OHS standards? ii) why does the offshore wind industry need a standardized OHS management system? and iii) who can play the key role in this process? To achieve these objectives, this research applies the interview and survey techniques. This study has identified several key challenges in OHS management system which are; gaps in coordination and communication among the stakeholders, gaps in incident reporting systems, absence of a harmonized OHS standard and blame culture. Furthermore, this research has identified eleven key stakeholders who are actively involve with the offshore wind business in Denmark. As noticed, the relationships among these stakeholders are very complex specially between operators and sub-contractors. The respondent technicians are concerned with the compliance of various third-party OHS standards (e.g. ISO 31000, ISO 29400, Good practice guidelines by G+) which are applying by various offshore companies. On top of these standards, operators also impose their own OHS standards. From the technicians point of angle, many of these standards are not even specific for the offshore wind sector. So, it is a big challenge for the technicians and sub-contractors to comply with different company specific standards which also elevate the price of their services offer to the operators. For instance, when a sub-contractor is competing for a bidding, it must fulfill a number of OHS requirements (which demands many extra documantions) set by the individual operator and/the turbine supplier. According to sub-contractors’ point of view these extra works consume too much time to prepare the bidding documents and they also need to train their employees to pass the specific OHS certification courses to accomplish the demand for individual clients and individual project. The sub-contractors argued that in many cases these extra documentations and OHS certificates are inessential to ensure the quality service. So, a standardized OHS management procedure (which could be applicable for all the clients) can easily solve this problem. In conclusion, this study highlights that i) development of a harmonized OHS standard applicable for all the operators and turbine suppliers, ii) encouragement of technicians’ active participation in the OHS management, iii) development of a good safety leadership, and, iv) sharing of experiences among the stakeholders (specially operators-operators-sub contractors) are the most vital strategies to overcome the existing challenges and to achieve the goal of 'zero accident/harm' in the offshore wind industry.Keywords: green energy, offshore, safety, Denmark
Procedia PDF Downloads 2153672 Description of Decision Inconsistency in Intertemporal Choices and Representation of Impatience as a Reflection of Irrationality: Consequences in the Field of Personalized Behavioral Finance
Authors: Roberta Martino, Viviana Ventre
Abstract:
Empirical evidence has, over time, confirmed that the behavior of individuals is inconsistent with the descriptions provided by the Discounted Utility Model, an essential reference for calculating the utility of intertemporal prospects. The model assumes that individuals calculate the utility of intertemporal prospectuses by adding up the values of all outcomes obtained by multiplying the cardinal utility of the outcome by the discount function estimated at the time the outcome is received. The trend of the discount function is crucial for the preferences of the decision maker because it represents the perception of the future, and its trend causes temporally consistent or temporally inconsistent preferences. In particular, because different formulations of the discount function lead to various conclusions in predicting choice, the descriptive ability of models with a hyperbolic trend is greater than linear or exponential models. Suboptimal choices from any time point of view are the consequence of this mechanism, the psychological factors of which are encapsulated in the discount rate trend. In addition, analyzing the decision-making process from a psychological perspective, there is an equivalence between the selection of dominated prospects and a degree of impatience that decreases over time. The first part of the paper describes and investigates the anomalies of the discounted utility model by relating the cognitive distortions of the decision-maker to the emotional factors that are generated during the evaluation and selection of alternatives. Specifically, by studying the degree to which impatience decreases, it’s possible to quantify how the psychological and emotional mechanisms of the decision-maker result in a lack of decision persistence. In addition, this description presents inconsistency as the consequence of an inconsistent attitude towards time-delayed choices. The second part of the paper presents an experimental phase in which we show the relationship between inconsistency and impatience in different contexts. Analysis of the degree to which impatience decreases confirms the influence of the decision maker's emotional impulses for each anomaly in the utility model discussed in the first part of the paper. This work provides an application in the field of personalized behavioral finance. Indeed, the numerous behavioral diversities, evident even in the degrees of decrease in impatience in the experimental phase, support the idea that optimal strategies may not satisfy individuals in the same way. With the aim of homogenizing the categories of investors and to provide a personalized approach to advice, the results proven in the experimental phase are used in a complementary way with the information in the field of behavioral finance to implement the Analytical Hierarchy Process model in intertemporal choices, useful for strategic personalization. In the construction of the Analytic Hierarchy Process, the degree of decrease in impatience is understood as reflecting irrationality in decision-making and is therefore used for the construction of weights between anomalies and behavioral traits.Keywords: analytic hierarchy process, behavioral finance, financial anomalies, impatience, time inconsistency
Procedia PDF Downloads 683671 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3763670 Ecological Networks: From Structural Analysis to Synchronization
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.Keywords: ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks
Procedia PDF Downloads 3013669 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents
Authors: Chothmal, Basant Agarwal
Abstract:
Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.Keywords: feature selection methods, machine learning, NB, one-class SVM, sentiment analysis, support vector machine
Procedia PDF Downloads 5193668 Research on Measuring Operational Risk in Commercial Banks Based on Internal Control
Authors: Baobao Li
Abstract:
Operational risk covers all operations of commercial banks and has a close relationship with the bank’s internal control. But in the commercial banks' management practice, internal control is always separated from the operational risk measurement. With the increasing of operational risk events in recent years, operational risk is paid more and more attention by regulators and banks’ managements. The paper first discussed the relationship between internal control and operational risk management and used CVaR-POT model to measure operational risk, and then put forward a modified measurement method (to use operational risk assessment results to modify the measurement results of the CVaR-POT model). The paper also analyzed the necessity and rationality of this method. The method takes into consideration the influence of internal control, improves the accuracy and effectiveness of operational risk measurement and save the economic capital for commercial banks, avoiding the drawbacks of using some mainstream models one-sidedly.Keywords: commercial banks, internal control, operational risk, risk measurement
Procedia PDF Downloads 3983667 Effect of Neem Leaves Extract (Azadirachta Indica) on Blood Glucose Level and Lipid Profile in Normal and Alloxan-Diabetic Rabbits
Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed
Abstract:
Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models, and their effects confirmed. Neem or Margose (AzadirachtaIndica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic, and many other properties. In this paper deals with a comparative study of effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day) as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL and LDL but significantly increased (P<0.05) the concentration of HDL. The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone.Keywords: aqueos neem leaves extract, hypoglycemic, hypolipidemic, cholesterol
Procedia PDF Downloads 1663666 Internet Purchases in European Union Countries: Multiple Linear Regression Approach
Authors: Ksenija Dumičić, Anita Čeh Časni, Irena Palić
Abstract:
This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analysed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analysed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.Keywords: European union, Internet purchases, multiple linear regression model, outlier
Procedia PDF Downloads 3033665 Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb
Authors: Alaoui Hamza, Moutacalli Mohamed Tarik, Chebak Ahmed
Abstract:
The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process.Keywords: ability of normal walking, exoskeleton, hemiplegic patients, lower limb motion- mechatronics
Procedia PDF Downloads 1543664 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li
Abstract:
Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning
Procedia PDF Downloads 1493663 Identification of Hub Genes in the Development of Atherosclerosis
Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia
Abstract:
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics
Procedia PDF Downloads 703662 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 7823661 Analysis of the Aquifer Vulnerability of a Miopliocene Arid Area Using Drastic and SI Models
Abstract:
Many methods in the groundwater vulnerability have been developed in the world (methods like PRAST, DRIST, APRON/ARAA, PRASTCHIM, GOD). In this study, our choice dealt with two recent complementary methods using category mapping of index with weighting criteria (Point County Systems Model MSCP) namely the standard DRASTIC method and SI (Susceptibility Index). At present, these two methods are the most used for the mapping of the intrinsic vulnerability of groundwater. Two classes of groundwater vulnerability in the Biskra sandy aquifer were identified by the DRASTIC method (average and high) and the SI method (very high and high). Integrated analysis has revealed that the high class is predominant for the DRASTIC method whereas for that of SI the preponderance is for the very high class. Furthermore, we notice that the method SI estimates better the vulnerability for the pollution in nitrates, with a rate of 85 % between the concentrations in nitrates of groundwater and the various established classes of vulnerability, against 75 % for the DRASTIC method. By including the land use parameter, the SI method produced more realistic results.Keywords: DRASTIC, SI, GIS, Biskra sandy aquifer, Algeria
Procedia PDF Downloads 4883660 Volatility Spillover and Hedging Effectiveness between Gold and Stock Markets: Evidence for BRICS Countries
Authors: Walid Chkili
Abstract:
This paper investigates the dynamic relationship between gold and stock markets using data for BRICS counties. For this purpose, we estimate three multivariate GARCH models (namely CCC, DCC and BEKK) for weekly stock and gold data. Our main objective is to examine time variations in conditional correlations between the two assets and to check the effectiveness use of gold as a hedge for equity markets. Empirical results reveal that dynamic conditional correlations switch between positive and negative values over the period under study. This correlation is negative during the major financial crises suggesting that gold can act as a safe haven during the major stress period of stock markets. We also evaluate the implications for portfolio diversification and hedging effectiveness for the pair gold/stock. Our findings suggest that adding gold in the stock portfolio enhance its risk-adjusted return.Keywords: gold, financial markets, hedge, multivariate GARCH
Procedia PDF Downloads 474