Search results for: industrial production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9937

Search results for: industrial production

6007 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds

Authors: N. Stevulova, I. Schwarzova

Abstract:

The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.

Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties

Procedia PDF Downloads 349
6006 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method

Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi

Abstract:

Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.

Keywords: hydrothermal growth, sol-gel, zinc dioxide, biosensors

Procedia PDF Downloads 301
6005 Optimisation of Stored Alcoholic Beverage Joufinai with Reverse Phase HPLC Method and Its Antioxidant Activities: North- East India

Authors: Dibakar Chandra Deka, Anamika Kalita Deka

Abstract:

Fermented alcoholic beverage production has its own stand among the tribal communities of North-East India. This biological oxidation method is followed by Ahom, Dimasa, Nishi, Miri, Bodo, Rabha tribes of this region. Bodo tribes among them not only prepare fermented alcoholic beverage but also store it for various time periods like 3 months, 6 months, 9 months, 12 months and 15 months etc. They prepare alcoholic beverage Jou (rice beer) following the fermentation of Oryza sativa with traditional yeast culture Amao. Saccharomyces cerevisiae is the main domain strain present in Amao. Dongphangrakep (Scoparia dulcis), Mwkhna (Clerodendrum viscosum), Thalir (Musa balbisina) and Khantal Bilai (Ananas cosmos) are the main plants used for Amao preparation. The stored Jou is known as Joufinai. They store the fermented mixture (rice and Amao) in anaerobic conditions for the preparation of Joufinai. We observed a successive increase in alcohol content from 3 months of storage period with 11.79 ± 0.010 (%, v/v) to 15.48 ± 0.070 (%, v/v) at 15 months of storage by a simple, reproducible and solution based colorimetric method. A positive linear correlation was also observed between pH and ethanol content with storage having correlation coefficient 0.981. Here, we optimised the detection of change in constituents of Joufinai during storage using reverse phase HPLC method. We found acetone, ethanol, acetic acid, glycerol as main constituents present in Joufinai. A very good correlation was observed from 3 months to 15 months of storage periods with its constituents. Increase in glycerol content was also detected with storage periods and hence Joufinai can be use as a precursor of above stated compounds. We also observed antioxidant activities increase from 0.056 ±2.80 mg/mL for 3 months old to 0.078± 5.33 mg/mL (in ascorbic acid equivalents) for 15 month old beverage by DPPH radical scavenging method. Therefore, we aimed for scientific validation of storage procedure used by Bodos in Joufinai production and to convert the Bodos’ traditional alcoholic beverage to a commercial commodity through our study.

Keywords: Amao, correlation, beverage, joufinai

Procedia PDF Downloads 322
6004 Further Investigation of Core Degradation Using Quench Test Facility Results

Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev

Abstract:

This paper presents an application of the ASTEC V2r3p3 computer code for simulation of QUENCH-12 experiment. The test has been performed to investigate the behavior of VVER type of fuel assemblies during severe accident conditions. In the performed analyses it has been assessed the mass of generated hydrogen during the experiment flooding of overheated core. The comparison of ASTECv2r3p3 calculated results with measured test data shows good agreement.

Keywords: hydrogen production, VVER, QUENCH facility, severe accident, reactor core

Procedia PDF Downloads 233
6003 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 127
6002 IT System in the Food Supply Chain Safety, Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: food supply chain, IT system, safety, SME

Procedia PDF Downloads 477
6001 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production

Authors: Deepak Loura

Abstract:

Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.

Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance

Procedia PDF Downloads 71
6000 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants

Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny

Abstract:

This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.

Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition

Procedia PDF Downloads 105
5999 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 231
5998 Urban Meetings: Graphic Analysis of the Public Space in a Cultural Building from São Paulo

Authors: Thalita Carvalho Martins de Castro, Núbia Bernardi

Abstract:

Currently, studies evidence that our cities are portraits of social relations. In the midst of so many segregations, cultural buildings emerge as a place to assemble collective activities and expressions. Through theater, exhibitions, educational workshops, libraries, the architecture approaches human relations and seeks to propose meeting places. The purpose of this research is to deepen the discussions about the contributions of cultural buildings in the use of the spaces of the contemporary city, based on the data and measure collected in the master's research in progress. The graphic analysis of the insertion of contemporary cultural buildings seeks to highlight the social use of space. The urban insertions of contemporary cultural buildings in the city of São Paulo (Brazil) will be analyzed to understand the relations between the architectural form and its audience. The collected data describe a dynamic of flows and the permanence in the use of these spaces, indicating the contribution of the cultural buildings, associated with artistic production, in the dynamics of urban spaces and the social modifications of their milieu. Among the case studies, the research in development is based on the registration and graphic analysis of the Praça das Artes (2012) building located in the historical central region of the city, which after a long period of great degradation undergoes a current redevelopment. The choice of this building was based on four parameters, both on the architectural scale and on the urban scale: urban insertion, local impact, cultural production and a mix of uses. For the analysis will be applied two methodologies of graphic analysis, one with diagrams accompanied by texts and another with the active analysis for open space projects using complementary graphic methodologies, with maps, plants, info-graphics, perspectives, time-lapse videos and analytical tables. This research aims to reinforce the debates between the methodologies of form-use spaces and visual synthesis applied in cultural buildings, in order that new projects can structure public spaces as catalysts for social use, generating improvements in the daily life of its users and in the cities where they are inserted.

Keywords: cultural buildings, design methodologies, graphic analysis, public spaces

Procedia PDF Downloads 306
5997 Comparison of Several Peat Qualities as Amendment to Improve Afforestation of Mine Wastes

Authors: Marie Guittonny-LarchevêQue

Abstract:

In boreal Canada, industrial activities such as forestry, peat extraction and metal mines often occur nearby. At closure, mine waste storage facilities have to be reclaimed. On tailings storage facilities, tree plantations can achieve rapid restoration of forested landscapes. However, trees poorly grow in mine tailings and organic amendments like peat are required to improve tailings’ structure and nutrients. Canada is a well-known producer of horticultural quality peat, but some lower quality peats coming from areas adjacent to the reclaimed mines could allow successful revegetation. In particular, hemic peat coming from the bottom of peat-bogs is more decomposed than fibric peat and is less valued for horticulture. Moreover, forest peat is sometimes excavated and piled by the forest industry after cuttings to stimulate tree regeneration on the exposed mineral soil. The objective of this project was to compare the ability of peats of differing quality and origin to improve tailings structure, nutrients and tree development. A greenhouse experiment was conducted along one growing season in 2016 with a complete randomized block design combining 8 repetitions (blocks) x 2 tree species (Populus tremuloides and Pinus banksiana) x 6 substrates (tailings, commercial horticultural peat, and mixtures of tailings with commercial peat, forest peat, local fibric peat, or local hemic peat) x 2 fertilization levels (with or without mineral fertilization). The used tailings came from a gold mine and were low in sulfur and trace metals. The commercial peat had a slightly acidic pH (around 6) while other peats had a clearly acidic pH (around 3). However, mixing peat with slightly alkaline tailings resulted in a pH close to 7 whatever the tested peats. The macroporosity of mixtures was intermediate between the low values of tailings (4%) and the high values of commercial peat alone (34%). Seedling survival was lower on tailings for poplar compared to all other treatments, with or without fertilization. Survival and growth were similar among all treatments for pine. Fertilization had no impact on the maximal height and diameter of poplar seedlings but changed the relative performance of the substrates. When not fertilized, poplar seedlings grown in commercial peat were the highest and largest, and the smallest and slenderest in tailings, with intermediate values in mixtures. When fertilized, poplar seedlings grown in commercial peat were smaller and slender compared to all other substrates. However for this species, foliar, shoot, and root biomass production was the greatest in commercial peat and the lowest in tailings compared to all mixtures, whether fertilized or not. The mixture with local fibric peat provided the seedlings with the lowest foliar N concentrations compared to all other substrates whatever the species or the fertilization treatment. At the short-term, the performance of all the tested peats were close when mixed to tailings, showing that peats of lower quality could be valorized instead of using horticultural peat. These results demonstrate that intersectorial synergies in accordance with the principles of circular economy may be developed in boreal Canada between local industries around the reclamation of mine waste dumps.

Keywords: boreal trees, mine spoil, mine revegetation, intersectorial synergies

Procedia PDF Downloads 250
5996 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 189
5995 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes

Authors: Hein Win Zaw

Abstract:

Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.

Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes

Procedia PDF Downloads 332
5994 Overview of Cage Aquaculture Practices, Benefits and Challenges on Africa Waters Bodies

Authors: Mekonen Hailu, Liu Liping

Abstract:

Cage aquaculture is highly preferred due to higher production per unit volume of water, lower costs of investment, and simpler routine farm management procedures compared to pond systems. In the 1980s, cage culture was first used on a trial basis in sub-Saharan Africa. Over the past 20 years, a small number of prosperous freshwater cage culture operations have started to emerge in Egypt, Rwanda, Kenya, Uganda, Tanzania, Ghana, Malawi, Zambia and Zimbabwe. Brackish and marine cage culture also offers a lot of potential, although this subsector hasn't seen any significant commercial growth to date. In 2019, 263 cage aquaculture installations on the African inland waters on 18 water bodies within eight countries with an estimated 20,114 cages were reported. The lakes Victoria, Kariba, Volta, and River Volta, which together account for 82.9% of all cage aquaculture installations regarded as sub-Saharan Africa's principal cage aquaculture regions (Fig 1). Except few small-scale trials with North African catfish (Clarias gariepinus), almost all farms in Sub-Saharan Africa and Egypt grow Nile tilapia (Oreochromis niloticus). More than 247,398 tonnes of fish are produced yearly from ten African countries through cage aquaculture. The expansion of cage culture in Africa provides job opportunities for both skilled and unskilled workers, nutritious food and foreign currency. The escaping non-native strains of tilapia in Lake Volta and the occurrence of a risky Tilapia lake virus (syncytial hepatitis), which has the potential to wipe out entire populations in both wild and farmed Nile tilapia on Lake Victoria, are threats coming with the expansion of cage aquaculture in Africa. In addition, the installations of 138 cage aquacultures were found in contrary to best cage culture practices. To sustain cage aquaculture development and maintain harmony with other water uses, developers must strictly abide by best practices. Hence, the exclusion of protected areas and small lakes (average depth 5 m or less) should be done, as well an Environmental Impact Assessment should be conducted before establishing the cage farms.

Keywords: Africa, cage aquaculture, production, threats

Procedia PDF Downloads 70
5993 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 167
5992 Preparation of hydrophobic silica membranes supported on alumina hollow fibers for pervaporation applications

Authors: Ami Okabe, Daisuke Gondo, Akira Ogawa, Yasuhisa Hasegawa, Koichi Sato, Sadao Araki, Hideki Yamamoto

Abstract:

Membrane separation draws attention as the energy-saving technology. Pervaporation (PV) uses hydrophobic ceramic membranes to separate organic compounds from industrial wastewaters. PV makes it possible to separate organic compounds from azeotropic mixtures and from aqueous solutions. For the PV separation of low concentrations of organics from aqueous solutions, hydrophobic ceramic membranes are expected to have high separation performance compared with that of conventional hydrophilic membranes. Membrane separation performance is evaluated based on the pervaporation separation index (PSI), which depends on both the separation factor and the permeate flux. Ingenuity is required to increase the PSI such that the permeate flux increases without reducing the separation factor or to increase the separation factor without reducing the flux. A thin separation layer without defects and pinholes is required. In addition, it is known that the flux can be increased without reducing the separation factor by reducing the diffusion resistance of the membrane support. In a previous study, we prepared hydrophobic silica membranes by a molecular templating sol−gel method using cetyltrimethylammonium bromide (CTAB) to form pores suitable for permitting the passage of organic compounds through the membrane. We separated low-concentration organics from aqueous solutions by PV using these membranes. In the present study, hydrophobic silica membranes were prepared on a porous alumina hollow fiber support that is thinner than the previously used alumina support. Ethyl acetate (EA) is used in large industrial quantities, so it was selected as the organic substance to be separated. Hydrophobic silica membranes were prepared by dip-coating porous alumina supports with a -alumina interlayer into a silica sol containing CTAB and vinyltrimethoxysilane (VTMS) as the silica precursor. Membrane thickness increases with the lifting speed of the sol in the dip-coating process. Different thicknesses of the γ-alumina layer were prepared by dip-coating the support into a boehmite sol at different lifting speeds (0.5, 1, 3, and 5 mm s-1). Silica layers were subsequently formed by dip-coating using an immersion time of 60 s and lifting speed of 1 mm s-1. PV measurements of the EA (5 wt.%)/water system were carried out using VTMS hydrophobic silica membranes prepared on -alumina layers of different thicknesses. Water and EA flux showed substantially constant value despite of the change of the lifting speed to form the γ-alumina interlayer. All prepared hydrophobic silica membranes showed the higher PSI compared with the hydrophobic membranes using the previous alumina support of hollow fiber.

Keywords: membrane separation, pervaporation, hydrophobic, silica

Procedia PDF Downloads 404
5991 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion

Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse

Abstract:

Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).

Keywords: nanolignin, nanoparticles, organosolv, steam explosion

Procedia PDF Downloads 130
5990 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method

Authors: Muhammad Shoaib, Hassan M Al-Swaidan

Abstract:

Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.

Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry

Procedia PDF Downloads 278
5989 Study of the Kinetic of the Reduction of Alpha and Beta PbO2 in H2SO4 on the Microcavity Electrode

Authors: N. Chahmana, I. Zerroual

Abstract:

The aim of our work is the contribution to the improvement of the performances of the positive plate of the lead acid battery. For that, we synthesized two varieties of PbO2 used in industry, alpha and beta PbO2 by electrochemical way starting from the not formed industrial plates. We studied the kinetics of reduction of the alpha varieties and PbO2 beta on electrode with microcavity in sulphuric medium. The electrochemical study of the powders of α and β-PbO2 was made by cyclic voltamperometry with sweeping of potential by using a traditional assembly with three electrodes. Values of the coefficient of diffusion of the proton in α and β-PbO2 are respectively equal to 0.498*10-8cm2 /s and 0.793*10-8 cm2 /s. During the cycling of the two varieties of PbO2, we obtain a clear increase in the capacity.

Keywords: lead accumulator, α and β - PbO2, synthesis, kinetics, cyclic voltametry, coefficient of diffusion

Procedia PDF Downloads 577
5988 Method for Selecting and Prioritising Smart Services in Manufacturing Companies

Authors: Till Gramberg, Max Kellner, Erwin Gross

Abstract:

This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.

Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data

Procedia PDF Downloads 89
5987 Firefighting Means in Food Industries

Authors: Racim Rifaat Ferdjani, Zineddine Chetoui

Abstract:

The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained.

Keywords: MLCI, firefighting means, Hamoud, Boualem

Procedia PDF Downloads 124
5986 Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that Galactomyces sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of Galactomyces sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that G. reessii has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters.

Keywords: decolorization, palm oil mill effluent, termite, yeast

Procedia PDF Downloads 209
5985 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security

Authors: Dawd Ahmed, Venkatesh Uddameri

Abstract:

Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.

Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis

Procedia PDF Downloads 141
5984 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System

Authors: Eronini Iheanyi Umez-Eronini

Abstract:

Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.

Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation

Procedia PDF Downloads 83
5983 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 459
5982 Little Girls and Big Stories: A Thematic Analysis of Gender Representations in Selected Asian Room to Read Storybooks

Authors: Cheeno Marlo Sayuno

Abstract:

Room to Read is an international nonprofit organization aimed at empowering young readers through literature and literacy education. In particular, the organization is focused on girls’ education in schools and bettering their social status through crafting stories and making sure that these stories are accessible to them. In 2019, Room to Read visited the Philippines and partnered with Philippine children’s literature publishers Adarna House, Lampara Books, Anvil Publishing, and OMF-Hiyas with the goal of producing contextualized stories that Filipino children can read. The result is a set of 20 storybooks developed by Filipino writers and illustrators, the author of this paper included. The project led to narratives of experiences in storybook production from conceptualization to publication, towards translations and reimagining in online repository, storytelling, and audiobook formats. During the production process, we were particularly reminded of gender representations, child’s rights, and telling stories that can empower the children in vulnerable communities, who are the beneficiaries of the project. The storybooks, along with many others produced in Asia and the world, are available online through the literacycloud.org website of Room to Read. In this study, the goal is to survey the stories produced in Asia and look at how gender is represented in the storybooks. By analyzing both the texts and the illustrations of the storybooks produced across Asian countries, themes of portrayals of young boys and girls, their characteristics and narratives, and how they are empowered in the stories are identified, with the goal of mapping how Room to Read is able to address the problem of access to literacy among young girls and ensuring them that they can do anything, the way they are portrayed in the stories. The paper hopes to determine how gender is represented in Asian storybooks produced by the international nonprofit organization Room to Read. Thematic textual analysis was used as methodology, where the storybooks are analyzed qualitatively to identify arising themes of gender representation. This study will shed light on the importance of responsible portrayal of gender in storybooks and how it can impact and empower children. The results of the study can also aid writers and illustrators in developing gender-sensitive storybooks.

Keywords: room to read, asian storybooks, young girls, thematic analysis, child empowerment, literacy, education

Procedia PDF Downloads 79
5981 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities

Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang

Abstract:

Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.

Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles

Procedia PDF Downloads 193
5980 Characteristics of Technology Infrastructure in Small Firms

Authors: Davinder Singh, Jaimal Singh Khamba, Tarun Nanda

Abstract:

Growth of the Indian economy has accelerated to 8% and efforts are on to further propel it to 10%. Undoubtedly, all the segments of the economy, viz. agriculture, industry and services have to improve their contribution to the economy. Growth of Micro-small and medium enterprises (MSMEs) is a sine qua non for the growth of industry, exports and other segments of the economy. Furthermore, promotion of entrepreneurship is also vital for sustenance and upward movement of the current growth trajectory of the economy. The MSME sector acts as a catalyst in upholding and encouraging the creation of the innovative spirit and entrepreneurship in the economy, thereby helping in laying the foundation for rapid industrial development. In this competitive world, they need to be able to confront the increasing competition from developed and emerging economies and to plug into the new market opportunities.

Keywords: characteristics, management, MSMEs, technology infrastructure

Procedia PDF Downloads 642
5979 Surface Modification of SUS-304 Using Nitriding Treatment for Application of Bipolar Plates of Proton Exchange Membrane Fuel Cells

Authors: Wei-Ru Chang, Jenn-Jiang Hwang, Zen-Ting Hsiao, Shu-Feng Lee

Abstract:

Proton exchange membrane (PEM) fuel cells are widely used in electrical systems as an economical, low-polluting energy source. This study investigates the effects of PEMFC gas nitriding treatment on metal bipolar plates. The test material was SUS304 stainless steel. The study explored five different pretreatment processes, varying the corrosion resistance and electrical conductivity conditions. The most effective process was industrial acid washing, followed by heating to 500 °C. Under the condition, the corrosion current density was 8.695 μA, significantly lower than that of the untreated pretreatment sample flakes, which was measured as 38.351 μA.

Keywords: nitriding, bipolar, 304, corrosion, resistance, pretreatment

Procedia PDF Downloads 1087
5978 Determination of Various Properties of Biodiesel Produced from Different Feedstocks

Authors: Faisal Anwar, Dawar Zaidi, Shubham Dixit, Nafees Ahmedii

Abstract:

This paper analyzes the various properties of biodiesel such as pour point, cloud point, viscosity, calorific value, etc produced from different feedstocks. The aim of the work is to analyze change in these properties after converting feedstocks to biodiesel and then comparring it with ASTM 6751-02 standards to check whether they are suitable for diesel engines or not. The conversion of feedstocks is carried out by a process called transesterification. This conversion is carried out to reduce viscosity, pour point, etc. It has been observed that there is some remarkable change in the properties of oil after conversion.

Keywords: biodiesel, ethyl ester, free fatty acid, production

Procedia PDF Downloads 367