Search results for: continuous speed profile data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30081

Search results for: continuous speed profile data

26151 Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)

Authors: Deepika Sharma, Bal Krishan

Abstract:

In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed.

Keywords: on-resistance, threshold voltage, epitaxial layer, breakdown voltage

Procedia PDF Downloads 327
26150 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 111
26149 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning

Authors: T. Bryan , V. Kepuska, I. Kostnaic

Abstract:

A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.

Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit

Procedia PDF Downloads 253
26148 An Overview of Adaptive Channel Equalization Techniques and Algorithms

Authors: Navdeep Singh Randhawa

Abstract:

Wireless communication system has been proved as the best for any communication. However, there are some undesirable threats of a wireless communication channel on the information transmitted through it, such as attenuation, distortions, delays and phase shifts of the signals arriving at the receiver end which are caused by its band limited and dispersive nature. One of the threat is ISI (Inter Symbol Interference), which has been found as a great obstacle in high speed communication. Thus, there is a need to provide perfect and accurate technique to remove this effect to have an error free communication. Thus, different equalization techniques have been proposed in literature. This paper presents the equalization techniques followed by the concept of adaptive filter equalizer, its algorithms (LMS and RLS) and applications of adaptive equalization technique.

Keywords: channel equalization, adaptive equalizer, least mean square, recursive least square

Procedia PDF Downloads 450
26147 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud

Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani

Abstract:

In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.

Keywords: privacy enforcement, platform-as-a-service privacy awareness, cloud computing privacy

Procedia PDF Downloads 227
26146 A Modelling of Main Bearings in the Two-Stroke Diesel Engine

Authors: Marcin Szlachetka, Rafal Sochaczewski, Lukasz Grabowski

Abstract:

This paper presents the results of the load simulations of main bearings in a two-stroke Diesel engine. A model of an engine lubrication system with connections of its main lubrication nodes, i.e., a connection of its main bearings in the engine block with the crankshaft, a connection of its crankpins with its connecting rod and a connection of its pin and its piston has been created for our calculations performed using the AVL EXCITE Designer. The analysis covers the loads given as a pressure distribution in a hydrodynamic oil film, a temperature distribution on the main bush surfaces for the specified radial clearance values as well as the impact of the force of gas on the minimum oil film thickness in the main bearings depending on crankshaft rotational speeds and temperatures of oil in the bearings. One of the main goals of the research has been to determine whether the minimum thickness of the oil film at which fluid friction occurs can be achieved for each value of crankshaft speed. Our model calculates different oil film parameters, i.e., its thickness, a pressure distribution there, the change in oil temperature. Additional enables an analysis of an oil temperature distribution on the surfaces of the bearing seats. It allows verifying the selected clearances in the bearings of the main engine under normal operation conditions and extremal ones that show a significant increase in temperature above the limit value. The research has been conducted for several engine crankshaft speeds ranging from 1000 rpm to 4000 rpm. The oil pressure in the bearings has ranged 2-5 bar according to engine speeds and the oil temperature has ranged 90-120 °C. The main bearing clearance has been adopted for the calculation and analysis as 0.025 mm. The oil classified as SAE 5W-30 has been used for the simulations. The paper discusses the selected research results referring to several specific operating points and different temperatures of the lubricating oil in the bearings. The received research results show that for the investigated main bearing bushes of the shaft, the results fall within the ranges of the limit values despite the increase in the oil temperature of the bearings reaching 120˚C. The fact that the bearings are loaded with the maximum pressure makes no excessive temperature rise on the bush surfaces. The oil temperature increases by 17˚C, reaching 137˚C at a speed of 4000 rpm. The minimum film thickness at which fluid friction occurs has been achieved for each of the operating points at each of the engine crankshaft speeds. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: diesel engine, main bearings, opposing pistons, two-stroke

Procedia PDF Downloads 137
26145 Overview of Adaptive Spline interpolation

Authors: Rongli Gai, Zhiyuan Chang

Abstract:

At this stage, in view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random Period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation

Procedia PDF Downloads 205
26144 Epidemiological Correlates of Adherence to Anti-Hypertensive Treatment in Primary Health Care Setting of Ludhiana, Punjab

Authors: Sangeeta Girdhar, Amanat Grewal, Nahush Bansal

Abstract:

Introduction: There is an increasing burden of hypertension in India. The morbidity and mortality arising from complications are mainly due to non-adherence to medication, unhealthy dietary habits, and lack of physical activity. Non-adherence is a well-recognised factor contributing to inadequate control of high blood pressure. Adherence to pharmacotherapy for hypertension varies from 43% to 88%. Non-adherence is influenced by various socio-demographic factors. Understanding these factors is useful in managing non-adherence. Therefore, the study was planned to determine adherence among hypertensives and factors associated with non-adherence to treatment. Methodology: A cross-sectional study was conducted at Urban Health Training Centre of Dayanand Medical College and Hospital Ludhiana. Patients attending the OPD over a period of 3 months were included in the study. Prior ethical approval was obtained, and informed consent was taken from subjects. A predesigned semi-structured questionnaire was applied, which included socio-demographic profile, treatment-seeking behaviour, adherence to the antihypertensive medication, lifestyle factors (intake of alcohol, smoking, consumption of junk food, high salt intake) contributing to the development of the disease. Reasons for non-adherence to the therapy were also explored. Data was entered into excel, and SPSS 26 version was used for analysis. Results: A total of 186 individuals were interviewed. Out of these, 113 females (60.8%) and 73 males (39.2%) participated in the study. Mean age of participants was 60.9 ± 10.7 years. Adherence to anti-hypertensive treatment was found in 68.3% of the participants. It was observed that adherence was more in literate individuals as compared to illiterate (p value- 0.78). Adherence was lower among smokers (33.3%) and alcohol consumers (53.8%) as compared to non-users (69.4% and 70.6%, respectively). The predominant reasons for skipping medications were discontinuing medication when feeling well, forgetfulness and unawareness. Conclusion: There is a need to generate awareness regarding the importance of adherence to therapy among patients. Intensive health education and counselling of the patients is the need of the hour.

Keywords: hypertension, anti-hypertensive, adherence, counselling

Procedia PDF Downloads 90
26143 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data

Authors: Saurav Kumar Suman, P. Karthigayani

Abstract:

In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.

Keywords: RISAT-1, classification, forest, SAR data

Procedia PDF Downloads 407
26142 Preliminary Study of Desiccant Cooling System under Algerian Climates

Authors: N. Hatraf, N. Moummi

Abstract:

The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.

Keywords: dehumidification, efficiency, humidity, Trnsys

Procedia PDF Downloads 440
26141 Performance Comparison of Joint Diagonalization Structure (JDS) Method and Wideband MUSIC Method

Authors: Sandeep Santosh, O. P. Sahu

Abstract:

We simulate an efficient multiple wideband and nonstationary source localization algorithm by exploiting both the non-stationarity of the signals and the array geometric information.This algorithm is based on joint diagonalization structure (JDS) of a set of short time power spectrum matrices at different time instants of each frequency bin. JDS can be used for quick and accurate multiple non-stationary source localization. The JDS algorithm is a one stage process i.e it directly searches the Direction of arrivals (DOAs) over the continuous location parameter space. The JDS method requires that the number of sensors is not less than the number of sources. By observing the simulation results, one can conclude that the JDS method can localize two sources when their difference is not less than 7 degree but the Wideband MUSIC is able to localize two sources for difference of 18 degree.

Keywords: joint diagonalization structure (JDS), wideband direction of arrival (DOA), wideband MUSIC

Procedia PDF Downloads 468
26140 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis

Authors: Hamd Rezaeifar, Hamid Reza Sahriari

Abstract:

Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.

Keywords: accident, data mining, neural network, GIS

Procedia PDF Downloads 47
26139 Methodology of the Turkey’s National Geographic Information System Integration Project

Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa

Abstract:

With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.

Keywords: data specification, geoportal, GIS, INSPIRE, Turkish National Geographic Information System, TUCBS, Turkey's national geographic information system

Procedia PDF Downloads 144
26138 Secure Content Centric Network

Authors: Syed Umair Aziz, Muhammad Faheem, Sameer Hussain, Faraz Idris

Abstract:

Content centric network is the network based on the mechanism of sending and receiving the data based on the interest and data request to the specified node (which has cached data). In this network, the security is bind with the content not with the host hence making it host independent and secure. In this network security is applied by taking content’s MAC (message authentication code) and encrypting it with the public key of the receiver. On the receiver end, the message is first verified and after verification message is saved and decrypted using the receiver's private key.

Keywords: content centric network, client-server, host security threats, message authentication code, named data network, network caching, peer-to-peer

Procedia PDF Downloads 644
26137 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
26136 Development of Portable Water Jet Cutter Mobile Hand Tool: Analysis of Nozzle Geometries and Materials

Authors: Razali Bin Abidin

Abstract:

This paper presents the development of a portable water jet cutter for soft materials such as meat. Twelve geometries of nozzles were simulated using finite element method. Water pressure was set to 1500 lb/in². Through the simulation, highest average water output speed was 133.04 m/s. The nozzle was fabricated from Al - alloy 5052 with the Factor of Safety~ 3. This indicates that the nozzle made of Al-alloy 5052 is capable of performing the cutting process without any fracture. Preliminary design of mobile water jet hand tool is presented at the end of this paper.

Keywords: water jet, finite element, Al-alloy 5052, nozzle geometry

Procedia PDF Downloads 375
26135 Instruction and Learning Design Consideration for the Development of Mobile Learning Application

Authors: M. Sarrab, M. Elbasir

Abstract:

Most of mobile learning applications currently available are developed for the formal education and learning environment. Those applications are characterized by the improvement of the interaction process between instructors and learners to provide more collaboration and flexibility in the learning process. Despite the long history and large amount of research on Instruction design model and mobile learning there is no complete and well defined set of steps to follow in designing mobile learning applications. Based on this scenario, this paper focuses on identifying instruction design phases considerations and influencing factors in developing mobile learning application. This set of instruction design steps includes analysis, design, development, implementation, evaluation and continuous has been built from a literature study with focus on standards for learning and mobile application software quality and guidelines. The effort is part of an Omani-funded research project investigating the development, adoption and dissemination of mobile learning in Oman.

Keywords: instruction design, mobile learning, mobile application

Procedia PDF Downloads 603
26134 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library

Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni

Abstract:

A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.

Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.

Procedia PDF Downloads 103
26133 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Likas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.

Keywords: big data, natural language generation, publishing, robotic journalism

Procedia PDF Downloads 431
26132 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting

Authors: Aswathi Thrivikraman, S. Advaith

Abstract:

The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.

Keywords: LSTM, autoencoder, forecasting, seq2seq model

Procedia PDF Downloads 155
26131 Effect of Neem Leaves Extract (Azadirachta Indica) on Blood Glucose Level and Lipid Profile in Normal and Alloxan-Diabetic Rabbits

Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed

Abstract:

Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models, and their effects confirmed. Neem or Margose (AzadirachtaIndica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic, and many other properties. In this paper deals with a comparative study of effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day) as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL and LDL but significantly increased (P<0.05) the concentration of HDL. The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone.

Keywords: aqueos neem leaves extract, hypoglycemic, hypolipidemic, cholesterol

Procedia PDF Downloads 163
26130 An Axisymmetric Finite Element Method for Compressible Swirling Flow

Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz

Abstract:

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords: axisymmetric problem, compressible Navier-Stokes equations, continuous finite elements, swirling flow

Procedia PDF Downloads 174
26129 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 91
26128 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

Authors: Imane Khalil, Quinn Pratt

Abstract:

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification

Procedia PDF Downloads 220
26127 Graded Orientation of the Linear Polymers

Authors: Levan Nadareishvili, Roland Bakuradze, Barbara Kilosanidze, Nona Topuridze, Liana Sharashidze, Ineza Pavlenishvili

Abstract:

Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.

Keywords: controlled graded stretching, gradually oriented state, linear polymers, zone stretching device

Procedia PDF Downloads 434
26126 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 157
26125 A Clinical Audit on Screening Women with Subfertility Using Transvaginal Scan and Hysterosalpingo Contrast Sonography

Authors: Aarti M. Shetty, Estela Davoodi, Subrata Gangooly, Anita Rao-Coppisetty

Abstract:

Background: Testing Patency of Fallopian Tubes is among one of the several protocols for investigating Subfertile Couples. Both, Hysterosalpingogram (HSG) and Laparoscopy and dye test have been used as Tubal patency test for several years, with well-known limitation. Hysterosalpingo Contrast Sonography (HyCoSy) can be used as an alternative tool to HSG, to screen patency of Fallopian tubes, with an advantage of being non-ionising, and also, use of transvaginal scan to diagnose pelvic pathology. Aim: To determine the indication and analyse the performance of transvaginal scan and HyCoSy in Broomfield Hospital. Methods: We retrospectively analysed fertility workup of 282 women, who attended HyCoSy clinic at our institution from January 2015 to June 2016. An Audit proforma was designed, to aid data collection. Data was collected from patient notes and electronic records, which included patient demographics; age, parity, type of subfertility (primary or secondary), duration of subfertility, past medical history and base line investigation (hormone profile and semen analysis). Findings of the transvaginal scan, HyCoSy and Laparoscopy were also noted. Results: The most common indication for referral were as a part of primary fertility workup on couples who had failure to conceive despite intercourse for a year, other indication for referral were recurrent miscarriage, history of ectopic pregnancy, post reversal of sterilization(vasectomy and tuboplasty), Post Gynaecology surgery(Loop excision, cone biopsy) and amenorrhea. Basic Fertility workup showed 34% men had abnormal semen analysis. HyCoSy was successfully completed in 270 (95%) women using ExEm foam and Transvaginal Scan. Of the 270 patients, 535 tubes were examined in total. 495/535 (93%) tubes were reported as patent, 40/535 (7.5%) tubes were reported as blocked. A total of 17 (6.3%) patients required laparoscopy and dye test after HyCoSy. In these 17 patients, 32 tubes were examined under laparoscopy, and 21 tubes had findings similar to HyCoSy, with a concordance rate of 65%. In addition to this, 41 patients had some form of pelvic pathology (endometrial polyp, fibroid, cervical polyp, fibroid, bicornuate uterus) detected during transvaginal scan, who referred to corrective surgeries after attending HyCoSy Clinic. Conclusion: Our audit shows that HyCoSy and Transvaginal scan can be a reliable screening test for low risk women. Furthermore, it has competitive diagnostic accuracy to HSG in identifying tubal patency, with an additional advantage of screening for pelvic pathology. With addition of 3D Scan, pulse Doppler and other non-invasive imaging modality, HyCoSy may potentially replace Laparoscopy and chromopertubation in near future.

Keywords: hysterosalpingo contrast sonography (HyCoSy), transvaginal scan, tubal infertility, tubal patency test

Procedia PDF Downloads 251
26124 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 117
26123 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.

Keywords: eye, heat-transfer, keratoplasty laser, surgery

Procedia PDF Downloads 273
26122 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 102