Search results for: bod (biological oxygen demand)
2728 Depletion Behavior of Potassium by Continuous Cropping Using Rice as a Test Crop
Authors: Rafeza Begum, Mohammad Mokhlesur Rahman, Safikul Moula, Rafiqul Islam
Abstract:
Potassium (K) is crucial for healthy soil and plant growth. However, K fertilization is either disregarded or poorly underutilized in Bangladesh agriculture, despite the great demand for crops. This could eventually result in a significant depletion of the soil's potassium reserves, irreversible alteration of the minerals that contain potassium, and detrimental effects on crop productivity. Soil K mining in Bangladesh is a worrying problem, and we need to evaluate it thoroughly and find remedies. A pot culture experiment was conducted in the greenhouse of Bangladesh Institute of Nuclear Agriculture (BINA) using eleven soil series of Bangladesh in order to see the depletion behaviour of potassium (K) by continuous cropping using rice (var. Iratom-24) as the test crop. The soil series were Ranishankhail, Kaonia. Sonatala, Silmondi, Gopalpur, Ishurdi, Sara, Kongsha, Nunni, Lauta and Amnura on which four successive rice plants (45 days duration) were raised with (100 ppm K) or without addition of potassium. Nitrogen, phosphorus, sulfur and zinc were applied as basal to all pots. Potassium application resulted in higher dry matter yield, increased K concentration and uptake in all the soils compared with no K treatment; which gradually decreased in the subsequent harvests. Furthermore, plant takes up K not only from exchangeable pool but also from non-exchangeable sites and a minimum replenishment of K from the soil reserve was observed. Continuous cropping has resulted in the depletion of available K of the soil. The result indicated that in order to sustain higher crop yield under intensive cultivation, the addition of potash fertilizer is necessary.Keywords: potassium, exchangeable pool, depletion behavior., Soil series
Procedia PDF Downloads 1302727 Dynamic Corrosion Prevention through Magneto-Responsive Nanostructure with Controllable Hydrophobicity
Authors: Anne McCarthy, Anna Kim, Yin Song, Kyoo Jo, Donald Cropek, Sungmin Hong
Abstract:
Corrosion prevention remains an indispensable concern across a spectrum of industries, demanding inventive and adaptable methodologies to effectively tackle the ever-evolving obstacles presented by corrosive surroundings. This abstract introduces a pioneering approach to corrosion prevention that amalgamates the distinct attributes of magneto-responsive polymers with finely adjustable hydrophobicity inspired by the structure of cicada wings, effectively deterring bacterial proliferation and biofilm formation. The proposed strategy entails the creation of an innovative array of magneto-responsive nanostructures endowed with the capacity to dynamically modulate their hydrophobic characteristics. This dynamic control over hydrophobicity facilitates active repulsion of water and corrosive agents on demand. Additionally, the cyclic motion generated by magnetic activation prevents the biofilms formation and rejection. Thus, the synergistic interplay between magneto-active nanostructures and hydrophobicity manipulation establishes a versatile defensive mechanism against diverse corrosive agents. This study introduces a novel method for corrosion prevention, harnessing the advantages of magneto-active nanostructures and the precision of hydrophobicity adjustment, resulting in water-repellency, effective biofilm removal, and offering a promising solution to handle corrosion-related challenges. We believe that the combined effect will significantly contribute to extending asset lifespan, improving safety, and reducing maintenance costs in the face of corrosion threats.Keywords: magneto-active material, nanoimprinting, corrosion prevention, hydrophobicity
Procedia PDF Downloads 692726 Policy Effectiveness in the Situation of Economic Recession
Authors: S. K. Ashiquer Rahman
Abstract:
The proper policy handling might not able to attain the target since some of recessions, e.g., pandemic-led crises, the variables shocks of the economics. At the level of this situation, the Central bank implements the monetary policy to choose increase the exogenous expenditure and level of money supply consecutively for booster level economic growth, whether the monetary policy is relatively more effective than fiscal policy in altering real output growth of a country or both stand for relatively effective in the direction of output growth of a country. The dispute with reference to the relationship between the monetary policy and fiscal policy is centered on the inflationary penalty of the shortfall financing by the fiscal authority. The latest variables socks of economics as well as the pandemic-led crises, central banks around the world predicted just about a general dilemma in relation to increase rates to face the or decrease rates to sustain the economic movement. Whether the prices hang about fundamentally unaffected, the aggregate demand has also been hold a significantly negative attitude by the outbreak COVID-19 pandemic. To empirically investigate the effects of economics shocks associated COVID-19 pandemic, the paper considers the effectiveness of the monetary policy and fiscal policy that linked to the adjustment mechanism of different economic variables. To examine the effects of economics shock associated COVID-19 pandemic towards the effectiveness of Monetary Policy and Fiscal Policy in the direction of output growth of a Country, this paper uses the Simultaneous equations model under the estimation of Two-Stage Least Squares (2SLS) and Ordinary Least Squares (OLS) Method.Keywords: IS-LM framework, pandemic. Economics variables shocks, simultaneous equations model, output growth
Procedia PDF Downloads 1002725 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface
Authors: Amnon Shirizly, Ohad Dolev
Abstract:
In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed
Procedia PDF Downloads 1092724 Triticum Aestivum Yield Enhanced with Irrigation Scheduling Strategy under Salinity
Authors: Taramani Yadav, Gajender Kumar, R. K. Yadav, H. S. Jat
Abstract:
Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.Keywords: Irrigation Scheduling, Saline Environment, Triticum aestivum, Yield
Procedia PDF Downloads 1462723 Treating Global Trauma: Pandemic, Wars and Beyond. Somatically Based Psychotherapy Interventions as a “Bottom-Up” Approach to Improving the Effectiveness of PTSD Treatment While Preventing Clinicians’ Burnout
Authors: Nina Kaufmans
Abstract:
Traditional therapies, utilizing spoken narratives as a primary source of intervention, are proven to be limited in effectively treating post traumatic stress disorder. Following the effects of the global pandemic of COVID-19, an increasing number of mental health consumers are beginning to experience somatically-based distress in addition to existing mental health symptoms. Moreover, the aftermath of the rapid increase in demand for mental health services has caused significant burnout in mental health professionals. This paper explores the ramifications of recent changes and challenges in the mental health demands and subsequent response and its consequences for mental health workers. We will begin by investigating the neurobiological mechanisms involved in traumatic experiences, then discuss the premises for "bottom-up" or somatically oriented psychotherapy approaches, and finally offer clinical skills and interventions for clients diagnosed with post traumatic stress disorder. In addition, we will discuss how somatically-based psychotherapy interventions implemented in sessions may decrease burnout and improve the well-being of clinicians. We will discuss how the integration of somatically-based interventions into counseling would increase the effectiveness of mental health recovery and sustain remission while simultaneously providing opportunities for self-care for mental health professionals.Keywords: somatic psychotherapy interventions, trauma counseling, preventing and treating burnout, adults with PTSD, bottom-up skills, the effectiveness of trauma treatment
Procedia PDF Downloads 822722 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor
Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang
Abstract:
To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel
Procedia PDF Downloads 3562721 DWDM Network Implementation in the Honduran Telecommunications Company "Hondutel"
Authors: Tannia Vindel, Carlos Mejia, Damaris Araujo, Carlos Velasquez, Darlin Trejo
Abstract:
The DWDM (Dense Wavelenght Division Multiplexing) is in constant growth around the world by consumer demand to meet their needs. Since its inception in this operation arises the need for a system which enable us to expand the communication of an entire nation to improve the computing trends of their societies according to their customs and geographical location. The Honduran Company of Telecommunications (HONDUTEL), provides the internet services and data transport technology with a PDH and SDH, which represents in the Republic of Honduras C. A., the option of viability for the consumer in terms of purchase value and its ease of acquisition; but does not have the efficiency in terms of technological advance and represents an obstacle that limits the long-term socio-economic development in comparison with other countries in the region and to be able to establish a competition between telecommunications companies that are engaged in this heading. For that reason we propose to establish a new technological trend implemented in Europe and that is applied in our country that allows us to provide a data transfer in broadband as it is DWDM, in this way we will have a stable service and quality that will allow us to compete in this globalized world, and that must be replaced by one that would provide a better service and which must be in the forefront. Once implemented the DWDM is build upon the existing resources, such as the equipment used, and you will be given life to a new stage providing a business image to the Republic of Honduras C,A, as a nation, to ensure the data transport and broadband internet to a meaningful relationship. Same benefits in the first instance to existing customers and to all the institutions were bidden to these public and private need of such services.Keywords: demultiplexers, light detectors, multiplexers, optical amplifiers, optical fibers, PDH, SDH
Procedia PDF Downloads 2682720 Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents
Authors: Shilpee Jain, Sachin Latiyan, Kaushik Suneet
Abstract:
Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation.Keywords: amorphous carbon, electric/magnetic stimulations, Janus microbots, magnetic nanoparticles, minimally invasive procedures
Procedia PDF Downloads 1282719 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation
Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand
Abstract:
Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation
Procedia PDF Downloads 1472718 Authentication Based on Hand Movement by Low Dimensional Space Representation
Authors: Reut Lanyado, David Mendlovic
Abstract:
Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.Keywords: authentication, feature extraction, hand recognition, security, signal processing
Procedia PDF Downloads 1332717 Preparation and Quality Control of a New Radiolabelled Complex of Spion
Authors: H. Yousefnia, SJ. Ahmadi, S. Sajadi, S. Zolghadri, A. Bahrami-Samani, M. Bagherzadeh
Abstract:
Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) as the multitask agents have showed advantageous characteristics. The aim of this study was the preparation and quality control of 153Sm-DTPA-DA-SPION complex. Samarium-153 was produced by neutron irradiation of the enriched 152Sm2O3 in a research reactor for 5 d. For radiolabeling purposes, 8 mg of the ligand was added to the vial containing 153SmCl3 and the mixture was sonicated 30 min, while pH was adjusted to 7-8. The radiochemical purity of the complex was checked by the ITLC method using NH4OH:MeOH:H2O (0.2:2:4) as the mobile phase. This new radiolabeled complex was prepared with a radiochemical purity of higher than 98% in 30 min at the optimized condition. The complex was kept at room temperature and in human serum at 37 °C for 48 h, showed no loss of 153Sm from the complex. Considering all of these features, this new radiolabeled complex can be considered as a good therapeutic agent; however, further studies on its biological behavior are still needed.Keywords: iron nanoparticles, preparation, quality control, 153Sm
Procedia PDF Downloads 3342716 A Statistical Analysis on the Comparison of First and Second Waves of COVID-19 and Importance of Early Actions in Public Health for Third Wave in India
Authors: Maitri Dave
Abstract:
Coronaviruses (CoV) is such infectious virus which has impacted globally in a more dangerous manner causing severe lung problems and leaving behind more serious diseases among the people. This pandemic has affected globally and created severe respiratory problems, and damaged the lungs. India has reported the first case of COVID-19 in January 2020. The first wave of COVID-19 took place from April to September of 2020. Soon after, a second peak is also noticed in the month of March 2021, which in turn becomes more dangerous due to a lack of supply of medical equipment. It created resource deficiency globally, specifically in India, where some necessary life-saving equipment like ventilators and oxygenators were not sufficient to cater to the demand-supply ratio effectively. Through carefully examining such a situation, India began to execute the process of vaccination in the month of January 2021 and successfully administered 25,46,71,259 doses of vaccines till now, which is only 15.5% of the total population while only 3.6% of the total population is fully vaccinated. India has authorized the British Oxford–AstraZeneca vaccine (Covishield), the Indian BBV152 (Covaxin) vaccine, and the Russian Sputnik V vaccine for emergency use. In the present study, we have collected all the data state wisely of both first and second wave and analyzed them using MS Excel Version 2019 and SPSS Statistics Version 26. Following the trends, we have predicted the characteristics of the upcoming third wave of COVID-19 and recommended some strategies, early actions, and measures that can be taken by the public health system in India to combat the third wave more effectively.Keywords: COVID-19, vaccination, Covishiled, Coronavirus
Procedia PDF Downloads 2182715 The Study of Biodiversity of Thirty Two Families of Useful Plants Existed in Georgia
Authors: Kacharava Tamar, Korakhashvili Avtandil, Epitashvili Tinatin
Abstract:
The article deals with the database, which was created by the authors, related to biodiversity of some families of useful plants (medicinal, aromatic, spices, dye and poisonous) existing in Georgia considering important taxonomy. Our country is also rich with endemic genera. The results of monitoring of the phytogenetic resources to reveal perspective species and situation of endemic species and resources are also discussed in this paper. To get some new medicinal and preventive treatments using plant raw material in the phytomedicine, phytocosmetics and phytoculinary, the unique phytogenetic resources should be protected because the application of useful plants is becoming irreversible. This can be observed along with intensification and sustainable use of ethnobotanical traditions and promotion of phytoproduction based on the international requirements on biodiversity (Convention on Biological Diversity - CBD). Though Georgian phytopharmacy has the centuries-old traditions, today it is becoming the main concern.Keywords: aromatic, medicinal, poisonous, spicy, dye plants, endemic biodiversity, endemic, ELISA, GIS
Procedia PDF Downloads 1602714 The Professional Rehabilitation of Workers Affected by Chronic Low Back Pain in 'Baixada Santista' Region, Brazil
Authors: Maria Do Carmo Baracho De Alencar
Abstract:
Back pain is considered a worldwide public health problem and has led to numerous work-related absence from work and public spending on rehabilitation, as well as difficulties in the process of professional rehabilitation and return to work. Also, the rehabilitation of workers is one of the great challenges today and for the field of Workers' Health in Brazil. Aim: To investigate the procedures related to the professional rehabilitation of insured workers affected by chronic low back pain, based on the perceptions of professional counselors. Methods: A list of related professional counselors was obtained from the Professional Rehabilitation Coordination of the Baixada Santista (SP) region, and from the Social Security National Institute of Brazil, and in which cities they worked. Semistructured and individual interview was scheduled, based on a pre-elaborated script, containing questions about procedures, experiences at work and feelings. The interviews were recorded and transcribed in full for content analysis. Results: Ten (10) professional counselors of both genders and from nine (9) cities from the Baixada Santista region participated in the study. Aged between 31 and 64 years, and time in service between 4 and 38 years. Only one of the professionals was graduaded in Psychology. Among the testimonies emerged the high demand of work, the lack of interest of companies, medical authority, the social helplessness after rehabilitation process, difficulty in assessing invisible pain, and suffering, anguish, and frustration at work, between others. Conclusion: The study contributes to reflections about the importance of interdisciplinary actions and the Psychology in the processes of professional rehabilitation and readaptation in the process of return to work.Keywords: low back pain, rehabilitation, work, occupational health
Procedia PDF Downloads 1392713 A Synthetic Strategy to Attach 2,6-Dichlorophenolindophenol onto Multi Walled Carbon Nanotubes and Their Application for Electrocatalytic Determination of Sulfide
Authors: Alireza Mohadesi, Ashraf Salmanipour
Abstract:
A chemically modified glassy carbon electrode for electrocatalytic determination of sulfide was developed using multiwalled carbon nanotubes (MWCNTs) covalently immobilized with 2,6-dichlorophenolindophenol (DPIP). The immobilization of 2,6-dichlorophenolindophenol with MWCNTs was performed with a new synthetic strategy and characterized by UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry. The cyclic voltammetric response of DPIP grafted onto MWCNTs indicated that it promotes the low potential, sensitive and stable determination of sulfide. The dependence of response currents on the concentration of sulfide was examined and was linear in the range of 10 - 1100 µM. The detection limit of sulfide was 5 µM and RSD for 100 and 500 µM sulfides were 1.8 and 1.3 %. Many interfering species had little or no effect on the determination of sulfide. The procedure was applied to determination of sulfide in waters samples.Keywords: functionalized carbon nanotubes, sulfide, biological samples, 2, 6-dichlorophenolindophenol
Procedia PDF Downloads 3192712 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia
Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez
Abstract:
Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium
Procedia PDF Downloads 2932711 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors
Authors: Ye Ling, Ruan Haihui
Abstract:
Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8
Procedia PDF Downloads 552710 New Approach to Construct Phylogenetic Tree
Authors: Ouafae Baida, Najma Hamzaoui, Maha Akbib, Abdelfettah Sedqui, Abdelouahid Lyhyaoui
Abstract:
Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes.Keywords: hierarchical classification, classification methods, structure of tree, genes, phylogenetic analysis
Procedia PDF Downloads 5132709 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)
Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta
Abstract:
Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.Keywords: advanced oxidation process, ferrate (VI) ion, oils and greases removal, produced water treatment
Procedia PDF Downloads 3252708 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques
Authors: Songul Cinaroglu
Abstract:
Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.Keywords: public hospital unions, efficiency, data envelopment analysis, random forest
Procedia PDF Downloads 1292707 Investigation and Optimization of DNA Isolation Efficiency Using Ferrite-Based Magnetic Nanoparticles
Authors: Tímea Gerzsenyi, Ágnes M. Ilosvai, László Vanyorek, Emma Szőri-Dorogházi
Abstract:
DNA isolation is a crucial step in many molecular biological applications for diagnostic and research purposes. However, traditional extraction requires toxic reagents, and commercially available kits are expensive, this leading to the recently wide-spread method, the magnetic nanoparticle (MNP)-based DNA isolation. Different ferrite containing MNPs were examined and compared in their plasmid DNA isolation efficiency. Among the tested MNPs, one has never been used for the extraction of plasmid molecules, marking a distinct application. pDNA isolation process was optimized for each type of nanoparticle and the best protocol was selected based on different criteria: DNA quantity, quality and integrity. With the best-performing magnetic nanoparticle, which excelled in all aspects, further tests were performed to recover genomic DNA from bacterial cells and a protocol was developed.Keywords: DNA isolation, nanobiotechnology, magnetic nanoparticles, protocol optimization, pDNA, gDNA
Procedia PDF Downloads 202706 Towards Law Data Labelling Using Topic Modelling
Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran
Abstract:
The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.Keywords: courts of accounts, data labelling, document similarity, topic modeling
Procedia PDF Downloads 1842705 Effects of Centrifugation, Encapsulation Method and Different Coating Materials on the Total Antioxidant Activity of the Microcapsules of Powdered Cherry Laurels
Authors: B. Cilek Tatar, G. Sumnu, M. Oztop, E. Ayaz
Abstract:
Encapsulation protects sensitive food ingredients against heat, oxygen, moisture and pH until they are released to the system. It can mask the unwanted taste of nutrients that are added to the foods for fortification purposes. Cherry laurels (Prunus laurocerasus) contain phenolic compounds which decrease the proneness to several chronic diseases such as types of cancer and cardiovascular diseases. The objective of this research was to study the effects of centrifugation, different coating materials and homogenization methods on microencapsulation of powders obtained from cherry laurels. In this study, maltodextrin and mixture of maltodextrin:whey protein with a ratio of 1:3 (w/w) were chosen as coating materials. Total solid content of coating materials was kept constant as 10% (w/w). Capsules were obtained from powders of freeze-dried cherry laurels through encapsulation process by silent crusher homogenizer or microfluidization. Freeze-dried cherry laurels were core materials and core to coating ratio was chosen as 1:10 by weight. To homogenize the mixture, high speed homogenizer was used at 4000 rpm for 5 min. Then, silent crusher or microfluidizer was used to complete encapsulation process. The mixtures were treated either by silent crusher for 1 min at 75000 rpm or microfluidizer at 50 MPa for 3 passes. Freeze drying for 48 hours was applied to emulsions to obtain capsules in powder form. After these steps, dry capsules were grounded manually into a fine powder. The microcapsules were analyzed for total antioxidant activity with DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging method. Prior to high speed homogenization, the samples were centrifuged (4000 rpm, 1 min). Centrifugation was found to have positive effect on total antioxidant activity of capsules. Microcapsules treated by microfluidizer were found to have higher total antioxidant activities than those treated by silent crusher. It was found that increasing whey protein concentration in coating material (using maltodextrin:whey protein 1:3 mixture) had positive effect on total antioxidant activity for both silent crusher and microfluidization methods. Therefore, capsules prepared by microfluidization of centrifuged mixtures can be selected as the best conditions for encapsulation of cherry laurel powder by considering their total antioxidant activity. In this study, it was shown that capsules prepared by these methods can be recommended to be incorporated into foods in order to enhance their functionality by increasing antioxidant activity.Keywords: antioxidant activity, cherry laurel, microencapsulation, microfluidization
Procedia PDF Downloads 2972704 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 2752703 Microgrid: An Alternative of Electricity Supply to an Island in Thailand
Authors: Pawitchaya Srijaiwong, Surin Khomfoi
Abstract:
There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.Keywords: energy storage, islanding, microgrid, renewable energy
Procedia PDF Downloads 3322702 Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition
Authors: Jae Hong Kim, Sang Cheol Um, Jong Kook Lee
Abstract:
Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.Keywords: β-wollastonite, high density, MgSiO3, phase transition
Procedia PDF Downloads 5852701 Protective Effect of Ginger Root Extract on Dioxin-Induced Testicular Damage in Rats
Authors: Hamid Abdulroof Saleh
Abstract:
Background: Dioxins are one of the most widely distributed environmental pollutants. Dioxins consist of feedstock during the preparation of some industries, such as the paper industry as they can be produced in the atmosphere during the process of burning garbage and waste, especially medical waste. Dioxins can be found in the adipose tissues of animals in the food chain as well as in human breast milk. 2,3,7,8-Tetrachlorodibenzo-pdioxin (TCDD) is the most toxic component of a large group of dioxins. Humans are exposed to TCDD through contaminated food items like meat, fish, milk products, eggs etc. Recently, natural formulations relating to reducing or eliminating TCDD toxicity have been in focus. Ginger rhizome (Zingiber officinale R., family: Zingiberaceae), is used worldwide as a spice. Both antioxidative and androgenic activity of Z. officinale was reported in animal models. Researchers showed that ginger oil has dominative protective effect on DNA damage and might act as a scavenger of oxygen radical and might be used as an antioxidant. Aim of the work: The present study was undertaken to evaluate the toxic effect of TCDD on the structure and histoarchitecture of the testis and the protective role of co-administration of ginger root extract to prevent this toxicity. Materials & Methods: Male adult rats of Sprague-Dawley strain were assigned to four groups, eight rats in each; control group, dioxin treated group (given TCDD at the dose of 100 ng/kg Bwt/day by gavage), ginger treated group (given 50 mg/kg Bwt/day of ginger root extract by gavage), dioxin and ginger treated group (given TCDD at the dose of 100 ng/kg Bwt/day and 50 mg/kg Bwt/day of ginger root extract by gavages). After three weeks, rats were weighed and sacrificed where testis were removed and weighted. The testes were processed for routine paraffin embedding and staining. Tissue sections were examined for different morphometric and histopathological changes. Results: Dioxin administration showed a harmful effects in the body, testis weight and other morphometric parameters of the testis. In addition, it produced varying degrees of damage to the seminiferous tubules, which were shrunken and devoid of mature spermatids. The basement membrane was disorganized with vacuolization and loss of germinal cells. The co-administration of ginger root extract showed obvious improvement in the above changes and showed reversible morphometric and histopathological changes of the seminiferous tubules. Conclusion: Ginger root extract treatment in this study was successful in reversing all morphometric and histological changes of dioxin testicular damage. Therefore, it showed a protective effect on testis against dioxin toxicity.Keywords: dioxin, ginger, rat, testis
Procedia PDF Downloads 4222700 A Comparative Study of Environment Risk Assessment Guidelines of Developing and Developed Countries Including Bangladesh
Authors: Syeda Fahria Hoque Mimmi, Aparna Islam
Abstract:
Genetically engineered (GE) plants are the need of time for increased demand for food. A complete set of regulations need to be followed from the development of a GE plant to its release into the environment. The whole regulation system is categorized into separate stages for maintaining the proper biosafety. Environmental risk assessment (ERA) is one of such crucial stages in the whole process. ERA identifies potential risks and their impacts through science-based evaluation where it is done in a case-by-case study. All the countries which deal with GE plants follow specific guidelines to conduct a successful ERA. In this study, ERA guidelines of 4 developing and 4 developed countries, including Bangladesh, were compared. ERA guidelines of countries such as India, Canada, Australia, the European Union, Argentina, Brazil, and the US were considered as a model to conduct the comparison study with Bangladesh. Initially, ten parameters were detected to compare the required data and information among all the guidelines. Surprisingly, an adequate amount of data and information requirements (e.g., if the intended modification/new traits of interest has been achieved or not, the growth habit of GE plants, consequences of any potential gene flow upon the cultivation of GE plants to sexually compatible plant species, potential adverse effects on the human health, etc.) matched between all the countries. However, a few differences in data requirement (e.g., agronomic conventions of non-transformed plants, applicants should clearly describe experimental procedures followed, etc.) were also observed in the study. Moreover, it was found that only a few countries provide instructions on the quality of the data used for ERA. If these similarities are recognized in a more framed manner, then the approval pathway of GE plants can be shared.Keywords: GE plants, ERA, harmonization, ERA guidelines, Information and data requirements
Procedia PDF Downloads 1912699 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 68