Search results for: machine learning in healthcare
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10045

Search results for: machine learning in healthcare

6175 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 99
6174 Exploring the Use of Universal Design for Learning to Support The Deaf Learners in Lesotho Secondary Schools: English Teachers Voice

Authors: Ntloyalefu Justinah, Fumane Khanare

Abstract:

English learning has been found as one of the prevalent areas of difficulty for Deaf learners. However, studies conducted indicated that this challenge experienced by Deaf learners is an upsetting concern globally as is blamed and hampered by various reasons such as the way English is taught at schools, lack of teachers ' skills and knowledge, therefore, impact negatively on their academic performance. Despite any difficulty in English learning, this language is considered nowadays as the key tool to an educational and occupational career especially in Lesotho. This paper, therefore, intends to contribute to the existing literature by providing the views of Lesotho English teachers, which focuses on how effectively Universal design for learning can be implemented to enhance the academic performance of Deaf learners in context of the English language classroom. The purpose of this study sought to explore the use of universal design for learning (UDL) to support Deaf learners in Lesotho Secondary schools. The present study is informed by interpretative paradigm and situated within a qualitative research approach. Ten participating English teachers from two inclusive schools were purposefully selected and telephonically interviewed to generate data for this study. The data were thematically analysed. The findings indicated that even though UDL is identified as highly proficient and promotes flexibility in teaching methods teachers reflect limited knowledge of the UDL approach. The findings further showed that UDL ensures education for all learners, including marginalised groups, such as learners with disabilities through different teaching strategies. This means that the findings signify the effective use of UDL for the better performance of the English language by Deaf learners (DLs). This aligns with literature that shows mobilizing English teachers as assets help DLs to be engaged and have control in their communities by defining and solving problems using their resources and connections to other networks for asset and exchange. The study, therefore, concludes that teachers acknowledge that even though they assume to be knowledgeable about the definition of UDL, they have a limited practice of the approach, thus they need to be equipped with some techniques and skills to apply for supporting the performance of DLs by using UDL approach in their English teaching. The researchers recommend the awareness of UDL principles by the ministry of Education and Training and teachers training Universities, as well as teachers training colleges, for them to include it in their curricula so that teachers could be properly trained on how to apply it in their teaching effectively

Keywords: deaf learners, Lesotho, support learning, universal design for learning

Procedia PDF Downloads 117
6173 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences

Authors: Susanna Asatryan

Abstract:

The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.

Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,

Procedia PDF Downloads 471
6172 Understanding of the Impact of Technology in Collaborative Programming for Children

Authors: Nadia Selene Molina-Moreno, Maria Susana Avila-Garcia, Marco Bianchetti, Marcelina Pantoja-Flores

Abstract:

Visual Programming Tools available are a great tool for introducing children to programming and to develop a skill set for algorithmic thinking. On the other hand, collaborative learning and pair programming within the context of programming activities, has demonstrated to have social and learning benefits. However, some of the online tools available for programming for children are not designed to allow simultaneous and equitable participation of the team members since they allow only for a single control point. In this paper, a report the work conducted with children playing a user role is presented. A preliminary study to cull ideas, insights, and design considerations for a formal programming course for children aged 8-10 using collaborative learning as a pedagogical approach was conducted. Three setups were provided: 1) lo-fi prototype, 2) PC, 3) a 46' multi-touch single display groupware limited by the application to a single touch entry. Children were interviewed at the end of the sessions in order to know their opinions about teamwork and the different setups defined. Results are mixed regarding the setup, but they agree to like teamwork.

Keywords: children, collaborative programming, visual programming, multi-touch tabletop, lo-fi prototype

Procedia PDF Downloads 315
6171 Promoting Personhood and Citizenship Amongst Individuals with Learning Disabilities: An Occupational Therapy Approach

Authors: Rebecca Haythorne

Abstract:

Background: Agendas continuously emphasise the need to increase work based training and opportunities for individuals with learning disabilities. However research and statistics suggest that there is still significant stigma and stereotypes as to what they can contribute, or gain from being part of the working environment. Method: To tackles some of these prejudices an Occupational Therapy based intervention was developed for learning disability service users working at a social enterprise farm. The intervention aimed to increase positive public perception around individual capabilities and encourage individuals with learning disabilities to take ownership and be proud of their individual personhood and citizenship. This was achieved by using components of the Model of Human Occupation to tailor the intervention to individual values, skills and working contributions. The final project involved making creative wall art for public viewing, focusing on 'who works there and what they do'. This was accompanied by a visitor information guide, allowing individuals to tell visitors about themselves, the work they do and why it is meaningful to them. Outcomes: The intervention has helped to increased metal well-being and confidence of learning disability service users “people will know I work here now” and “I now have something to show my family about the work I do at the farm”. The intervention has also increased positive public perception and community awareness “you can really see the effort that’s gone into doing this” and “it’s a really visual experience to see people you don’t expect to see doing this type of work”. Resources left behind have further supported individuals to take ownership in creating more wall art to be sold at the farm shop. Conclusion: the intervention developed has helped to improve mental well-being of both service users and staff and improve community awareness. Due to this, the farm has decided to roll out the intervention to other areas of the social enterprise and is considering having more Occupational Therapy involvement in the future.

Keywords: citizenship, intervention, occupational therapy, personhood

Procedia PDF Downloads 474
6170 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 165
6169 A Positive Neuroscience Perspective for Child Development and Special Education

Authors: Amedeo D'Angiulli, Kylie Schibli

Abstract:

Traditionally, children’s brain development research has emphasized the limitative aspects of disability and impairment, electing as an explanatory model the classical clinical notions of brain lesion or functional deficit. In contrast, Positive Educational Neuroscience (PEN) is a new approach that emphasizes strengths and human flourishing related to the brain by exploring how learning practices have the potential to enhance neurocognitive flexibility through neuroplastic overcompensation. This mini-review provides an overview of PEN and shows how it links to the concept of neurocognitive flexibility. We provide examples of how the present concept of neurocognitive flexibility can be applied to special education by exploring examples of neuroplasticity in the learning domain, including: (1) learning to draw in congenitally totally blind children, and (2) music training in children from disadvantaged neighborhoods. PEN encourages educators to focus on children’s strengths by recognizing the brain’s capacity for positive change and to incorporate activities that support children’s individual development.

Keywords: neurocognitive development, positive educational neuroscience, sociocultural approach, special education

Procedia PDF Downloads 246
6168 L2 Exposure Environment, Teaching Skills, and Beliefs about Learners’ Out-of-Class Learning: A Survey on Teachers of English as a Foreign Language

Authors: Susilo Susilo

Abstract:

In the process of foreign language acquisition, L2 exposure has been evidently assumed efficient for learners to help increase their proficiency. However, to get enough L2 exposure in the context of learning English as a foreign language is not as easy as that of the first language learning context. Therefore, beyond the classroom L2 exposure is helpful for EFL learners to achieve the language tasks. Alongside the rapid development of technology and media, English as a foreign language is virtually used in the social media of almost all regions, affecting the faces of Teaching English as a Foreign Language (TEFL). This different face of TEFL unavoidably intrigues teachers to treat their students differently in the classroom in order that they can put more effort in maximizing beyond-the-class learning to help improve their in-class achievements. The study aims to investigate: 1) EFL teachers’ teaching skills and beliefs about students’ out-of-class activities in different L2 exposure environments, and 2) the effect on EFL teachers’ teaching skills and beliefs about students’ out-of-class activities of different L2 exposure environments. This is a survey for 80 EFL teachers from Senior High Schools in three regions of two provinces in Indonesia. A questionnaire using a four-point Likert scale was distributed to the respondents to elicit data. The questionnaires were developed by reffering to the constructs of teaching skills (i.e. teaching preparation, teaching action, and teaching evaluation) and beliefs about out-of-class learning (i.e. setting, process and atmosphere), which have been taken from some expert definitions. The internal consistencies for those constructs were examined by using Cronbach Alpha. The data of the study were analyzed by using SPSS program, i.e. descriptive statistics and independent sample t-test. The standard for determining the significance was p < .05. The results revealed that: 1) teaching skills performed by the teachers of English as a foreign language in different exposure environments showed various focus of teaching skills, 2) the teachers showed various ways of beliefs about students’ out-of-class activities in different exposure environments, 3) there was a significant difference in the scores for NNESTs’ teaching skills in urban regions (M=34.5500, SD=4.24838) and those in rural schools (M=24.9500, SD=2.42794) conditions; t (78)=12.408, p = 0.000; and 4) there was a significant difference in the scores for NNESTs’ beliefs about students’ out-of-class activities in urban schools (M=36.9250, SD=6.17434) and those in rural regions (M=29.4250, SD=4.56793) conditions; t (78)=6.176, p = 0.000. These results suggest that different L2 exposure environments really do have effects on teachers’ teaching skills and beliefs about their students’ out-of-class learning.

Keywords: belief about EFL out-of-class learning, L2 exposure environment, teachers of English as a foreign language, teaching skills

Procedia PDF Downloads 343
6167 Integrating Optuna and Synthetic Data Generation for Optimized Medical Transcript Classification Using BioBERT

Authors: Sachi Nandan Mohanty, Shreya Sinha, Sweeti Sah, Shweta Sharma

Abstract:

The advancement of natural language processing has majorly influenced the field of medical transcript classification, providing a robust framework for enhancing the accuracy of clinical data processing. It has enormous potential to transform healthcare and improve people's livelihoods. This research focuses on improving the accuracy of medical transcript categorization using Bidirectional Encoder Representations from Transformers (BERT) and its specialized variants, including BioBERT, ClinicalBERT, SciBERT, and BlueBERT. The experimental work employs Optuna, an optimization framework, for hyperparameter tuning to identify the most effective variant, concluding that BioBERT yields the best performance. Furthermore, various optimizers, including Adam, RMSprop, and Layerwise adaptive large batch optimization (LAMB), were evaluated alongside BERT's default AdamW optimizer. The findings show that the LAMB optimizer achieves a performance that is equally good as AdamW's. Synthetic data generation techniques from Gretel were utilized to augment the dataset, expanding the original dataset from 5,000 to 10,000 rows. Subsequent evaluations demonstrated that the model maintained its performance with synthetic data, with the LAMB optimizer showing marginally better results. The enhanced dataset and optimized model configurations improved classification accuracy, showcasing the efficacy of the BioBERT variant and the LAMB optimizer. It resulted in an accuracy of up to 98.2% and 90.8% for the original and combined datasets.

Keywords: BioBERT, clinical data, healthcare AI, transformer models

Procedia PDF Downloads 13
6166 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning

Authors: Arun Sanjel, Greg Speegle

Abstract:

Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.

Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC

Procedia PDF Downloads 115
6165 English for Academic and Specific Purposes: A Corpus-Informed Approach to Designing Vocabulary Teaching Materials

Authors: Said Ahmed Zohairy

Abstract:

Significant shifts in the theory and practice of teaching vocabulary affect teachers’ decisions about learning materials’ design. Relevant literature supports teaching specialised, authentic, and multi-word lexical items rather than focusing on single-word vocabulary lists. Corpora, collections of texts stored in a database, presents a reliable source of teaching and learning materials. Although corpus-informed studies provided guidance for teachers to identify useful language chunks and phraseological units, there is a scarcity in the literature discussing the use of corpora in teaching English for academic and specific purposes (EASP). The aim of this study is to improve teaching practices and provide a description of the pedagogical choices and procedures of an EASP tutor in an attempt to offer guidance for novice corpus users. It draws on the researcher’s experience of utilising corpus linguistic tools to design vocabulary learning activities without focusing on students’ learning outcomes. Hence, it adopts a self-study research methodology which is based on five methodological components suggested by other self-study researchers. The findings of the study noted that designing specialised and corpus-informed vocabulary learning activities could be challenging for teachers, as they require technical knowledge of how to navigate corpora and utilise corpus analysis tools. Findings also include a description of the researcher’s approach to building and analysing a specialised corpus for the benefit of novice corpus users; they should be able to start their own journey of designing corpus-based activities.

Keywords: corpora, corpus linguistics, corpus-informed, English for academic and specific purposes, agribusiness, vocabulary, phraseological units, materials design

Procedia PDF Downloads 32
6164 Comparing the ‘Urgent Community Care Team’ Clinical Referrals in the Community with Suggestions from the Clinical Decision Support Software Dem DX

Authors: R. Tariq, R. Lee

Abstract:

Background: Additional demands placed on senior clinical teams with ongoing COVID-19 management has accelerated the need to harness the wider healthcare professional resources and upskill them to take on greater clinical responsibility safely. The UK NHS Long Term Plan (2019)¹ emphasises the importance of expanding Advanced Practitioners’ (APs) roles to take on more clinical diagnostic responsibilities to cope with increased demand. In acute settings, APs are often the first point of care for patients and require training to take on initial triage responsibilities efficiently and safely. Critically, their roles include determining which onward services the patients may require, and assessing whether they can be treated at home, avoiding unnecessary admissions to the hospital. Dem Dx is a Clinical Reasoning Platform (CRP) that claims to help frontline healthcare professionals independently assess and triage patients. It guides the clinician from presenting complaints through associated symptoms to a running list of differential diagnoses, media, national and institutional guidelines. The objective of this study was to compare the clinical referral rates and guidelines adherence registered by the HMR Urgent Community Care Team (UCCT)² and Dem Dx recommendations using retrospective cases. Methodology: 192 cases seen by the UCCT were anonymised and reassessed using Dem Dx clinical pathways. We compared the UCCT’s performance with Dem Dx regarding the appropriateness of onward referrals. We also compared the clinical assessment regarding adherence to NICE guidelines recorded on the clinical notes and the presence of suitable guidance in each case. The cases were audited by two medical doctors. Results: Dem Dx demonstrated appropriate referrals in 85% of cases, compared to 47% in the UCCT team (p<0.001). Of particular note, Dem Dx demonstrated an almost 65% (p<0.001) improvement in the efficacy and appropriateness of referrals in a highly experienced clinical team. The effectiveness of Dem Dx is in part attributable to the relevant NICE and local guidelines found within the platform's pathways and was found to be suitable in 86% of cases. Conclusion: This study highlights the potential of clinical decision support, as Dem Dx, to improve the quality of onward clinical referrals delivered by a multidisciplinary team in primary care. It demonstrated that it could support healthcare professionals in making appropriate referrals, especially those that may be overlooked by providing suitable clinical guidelines directly embedded into cases and clear referral pathways. Further evaluation in the clinical setting has been planned to confirm those assumptions in a prospective study.

Keywords: advanced practitioner, clinical reasoning, clinical decision-making, management, multidisciplinary team, referrals, triage

Procedia PDF Downloads 154
6163 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 197
6162 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ

Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell

Abstract:

This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.

Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction

Procedia PDF Downloads 356
6161 Blockchain Technology Applications in Patient Tracking Systems Regarding Privacy-Preserving Concerns and COVID-19 Pandemic

Authors: Farbod Behnaminia, Saeed Samet

Abstract:

The COVID-19 pandemic has paralyzed many lives until a vaccine was available, which caused the so-called “new normal.” According to the World Health Organization (WHO), COVID-19 is an infectious disease. It can cause significant illness or death in anyone. Governments and health officials tried to impose rules and regulations to avoid and slow down transmission. Therefore, software engineers worldwide developed applications to trace and track patients’ movements and notify others, mainly using Bluetooth. In this way, everyone could be informed whether they come in close contact with someone who has COVID-19 and takes proper safety precautions. Because most of the applications use technologies that can potentially reveal the user’s identity and location, researchers have debated privacy preservation and how to improve user privacy during such pandemics. Thanks to Distributed Ledger Technology (DLT), there have been some proposed methods to develop privacy-preserving Patient Tracking Systems in the last two years. As an instance of the DLT, Blockchain is like a decentralized peer-to-peer database that maintains a record of transactions. Transactions are immutable, transparent, and anonymous in this system. We conducted a comprehensive evaluation of the literature by looking for papers in the relevant field and dividing them into pre- and post-pandemic systems. Additionally, we discussed the many uses of blockchain technology in pandemic control. We found that two major obstacles facing blockchain implementation across many healthcare systems are scalability and privacy. The Polkadot platform is presented, along with a review of its efficacy in tackling current concerns. A more scalable healthcare system is achievable in the near future using Polkadot as well as a much more privacy-preserving environment.

Keywords: blockchain, electronic record management, EHR, privacy-preserving, patient tracking, COVID-19, trust and confidence, Polkadot

Procedia PDF Downloads 107
6160 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 397
6159 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 328
6158 Accomplishing Mathematical Tasks in Bilingual Primary Classrooms

Authors: Gabriela Steffen

Abstract:

Learning in a bilingual classroom not only implies learning in two languages or in an L2, it also means learning content subjects through the means of bilingual or plurilingual resources, which is of a qualitatively different nature than ‘monolingual’ learning. These resources form elements of a didactics of plurilingualism, aiming not only at the development of a plurilingual competence, but also at drawing on plurilingual resources for nonlinguistic subject learning. Applying a didactics of plurilingualism allows for taking account of the specificities of bilingual content subject learning in bilingual education classrooms. Bilingual education is used here as an umbrella term for different programs, such as bilingual education, immersion, CLIL, bilingual modules in which one or several non-linguistic subjects are taught partly or completely in an L2. This paper aims at discussing first results of a study on pupil group work in bilingual classrooms in several Swiss primary schools. For instance, it analyses two bilingual classes in two primary schools in a French-speaking region of Switzerland that follows a part of their school program through German in addition to French, the language of instruction in this region. More precisely, it analyses videotaped classroom interaction and in situ classroom practices of pupil group work in a mathematics lessons. The ethnographic observation of pupils’ group work and the analysis of their interaction (analytical tools of conversational analysis, discourse analysis and plurilingual interaction) enhance the description of whole-class interaction done in the same (and several other) classes. While the latter are teacher-student interactions, the former are student-student interactions giving more space to and insight into pupils’ talk. This study aims at the description of the linguistic and multimodal resources (in German L2 and/or French L1) pupils mobilize while carrying out a mathematical task. The analysis shows that the accomplishment of the mathematical task takes place in a bilingual mode, whether the whole-class interactions are conducted rather in a bilingual (German L2-French L1) or a monolingual mode in L2 (German). The pupils make plenty of use of German L2 in a setting that lends itself to use French L1 (peer groups with French as a dominant language, in absence of the teacher and a task with a mathematical aim). They switch from French to German and back ‘naturally’, which is regular for bilingual speakers. Their linguistic resources in German L2 are not sufficient to allow them to (inter-)act well enough to accomplish the task entirely in German L2, despite their efforts to do so. However, this does not stop them from carrying out the task in mathematics adequately, which is the main objective, by drawing on the bilingual resources at hand.

Keywords: bilingual content subject learning, bilingual primary education, bilingual pupil group work, bilingual teaching/learning resources, didactics of plurilingualism

Procedia PDF Downloads 165
6157 The Contribution of Vygotsky's Social and Cultural Theory to the Understanding of Cognitive Development

Authors: Salah Eddine Ben Fadhel

Abstract:

Lev Vygotsky (1896–1934) was one of the most significant psychologists of the twentieth century despite his short life. His cultural-historical theory is still inspiring many researchers today. At the same time, we observe in many studies a lack of understanding of his thoughts. Vygotsky poses in this theory the contribution of society to individual development and learning. Thus, it suggests that human learning is largely a social and cultural process, further mentioning the influence of interactions between people and the culture in which they live. In this presentation, we highlight, on the one hand, the strong points of the theory by highlighting the major questions it raises and its contribution to developmental psychology in general. On the other hand, we will demonstrate what Vygotsky's theory brings today to the understanding of the cognitive development of children and adolescents. The major objective is to better understand the cognitive mechanisms involved in the learning process in children and adolescents and, therefore, demonstrate the complex nature of psychological development. The main contribution is to provide conceptual insight, which allows us to better understand the importance of the theory and its major pedagogical implications.

Keywords: vygotsky, society, culture, history

Procedia PDF Downloads 70
6156 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 147
6155 The Comparison between Public's Social Distances against Syrian Refugees and Perceptions of Access to Healthcare Services: Istanbul Sample

Authors: Pinar Dogan, Merve Tarhan, Ahu Kurklu

Abstract:

Syrian refugees who sheltering due to war has protected by the Government of Turkey since 2011. Since Syria was a medium-low income country prior to the war, it is known that chronic health problems weren’t common among citizens. However, it is also known that they frequently use health services in our country because of the spread of infectious and acute diseases due to insufficient sanitation and crowding after the war. This study was planned to compare the social distances of the community against the Syrian refugees and the perceptions of accessing health care services. The descriptive-cross sectional study was carried out on 1262 individuals living in Istanbul. A questionnaire form consisted of Personal Information Form, The Bogardus Social Distance Scale (BSDS) and The Survey of Access to Healthcare Services (AHS) was used as data collection tool. Descriptive tests and chi-square test were used for statistical analysis. It was found that the majorities of participants was satisfied with the health services and were waiting for more than 40 minutes to be examined. It was determined that participants have high scores from BSDS. At the same time, the majority of participants stated that their level of access to health care is diminishing due to refugees. Participants who experienced disruption in access to health services due to refugees were found to have higher scores from BSDS. The data collection process in the study will continue until 2400 individuals are reached. With these conclusions, it is considered necessary that the effect of the presence of the refugees in reaching the health services and nursing care of the society should be revealed through extensive researches to be conducted in Turkey.

Keywords: health care services, nursing care, social distances, Syrian refugees

Procedia PDF Downloads 144
6154 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 126
6153 Hear My Voice: The Educational Experiences of Disabled Students

Authors: Karl Baker-Green, Ian Woolsey

Abstract:

Historically, a variety of methods have been used to access the student voice within higher education, including module evaluations and informal classroom feedback. However, currently, the views articulated in student-staff-committee meetings bear the most weight and can therefore have the most significant impact on departmental policy. Arguably, these forums are exclusionary as several students, including those who experience severe anxiety, might feel unable to participate in this face-to-face (large) group activities. Similarly, students who declare a disability, but are not in possession of a learning contract, are more likely to withdraw from their studies than those whose additional needs have been formally recognised. It is also worth noting that whilst the number of disabled students in Higher Education has increased in recent years, the percentage of those who have been issued a learning contract has decreased. These issues foreground the need to explore the educational experiences of students with or without a learning contract in order to identify their respective aspirations and needs and therefore help shape education policy. This is in keeping with the ‘Nothing about us without us’, agenda, which recognises that disabled individuals are best placed to understand their own requirements and the most effective strategies to meet these.

Keywords: education, student voice, student experience, student retention

Procedia PDF Downloads 97
6152 A Qualitative Study to Explore the Experiences of Muslim Nurses Working in an Acute Setting During the Covid-19 Pandemic

Authors: Sujatha Shanmugasundaram

Abstract:

Background: It has been since one year that COVID-19 has emerged into the world. Since then, healthcare professionals facing a great challenge in to fight against this deadly virus. According to World Health Organization (WHO) 2021, it is estimated that more than 131 million confirmed cases and 2million deaths around the world due to this pandemic. Nurses are the frontline workers who play a major role in safeguarding the lives of the people in acute care settings. Evidence suggests that there are numbers of research have been carried out on nurses' and healthcare provider’s experiences during the pandemic. But, unfortunately, there are no or little evidence available on Muslim nurse’s perspective. Hence, this research will investigate the experiences of Muslim nurses working in an acute care setting during the pandemic. Purpose: The purpose of the study is to explore the experiences of Muslim nurses working in an acute setting during the COVID-19 pandemic. Research Methods: A qualitative research approach will be utilized for the study. Semi-structured interview schedule will be used to collect the data. Face to face interviews will be conducted. All interviews will be conducted in Arabic, and it will be audio recorded. Verbatim will be noted. Muslim nurses working in an acute setting will be included in the study. Convenient sampling technique will be used to recruit the participants. Ethical approval will be obtained from the study sites. Strauss and Corbin's thematic analysis will be used to analyze the data. Conclusion: Considering that nurses are the frontline workers, they have a significant role in dealing with this COVID-19. It is a great challenge for the nurses working in an acute care setting. Thus, this study will bring out significant findings that will impact the nursing practice.

Keywords: acute care, COVID-19, experiences, muslim nurses

Procedia PDF Downloads 201
6151 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment

Authors: Mei-Hui Liu

Abstract:

This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.

Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience

Procedia PDF Downloads 262
6150 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level

Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham

Abstract:

Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.

Keywords: cognitive space, master students, metacognitive space, task design

Procedia PDF Downloads 62
6149 An Ethnobotanical Survey of Medicinal Plants for the Treatment of Infantile Diarrhea in the Eastern Cape Province of South Africa

Authors: Anela Lupuwana

Abstract:

The main objective of this paper is to develop an ethnobotanical survey that documents medicinal plants used to treat diarrhea among infants in the Eastern Cape province of South Africa. In South Africa’s pluralistic healthcare system, medicinal plants are an integral part of healing and treating an array of diseases. This is also the case in rural areas of South Africa, where healthcare facilities are hard to access. There is a lack of literature on the use of medicinal plants to cure ailments common to children, and this paper fills this gap. A total of 18 participants were interviewed using semi-structured interviews. A purposive approach was used to sample the study cohorts. A total of 28 medicinal plants representing 19 different families were recorded, with the family Asteraceae (11%) having the most medicinal plants. The remaining plants (82%) were distributed equally among the following families: Rubiaceae, Canellaceae, Aloaceae, Rutaceae, Thymeleaceae, Myrinaceae, Olinaceae, Iradeceae, Zingiberaceae, Capparaceae, Aizoaceae, Fabaceae, Geraniaceae, Cornaceae, Monimiaceae, Talinaceae, Chrysobalanaceae, and Icacinaceae. Oral administration was the most common mode of administration, with 82% of plants taken orally. Healing was proven to be holistic; it was more than just treating physical ailments as such; infants were protected from evil spirits that made them vulnerable to illnesses. There was also evidence of the assimilation of Dutch medicine and animal products into traditional healing methods. In order to mitigate the prevalence of disease and illness in South Africa, I recommend that diversity in healing practices should be acknowledged and appreciated.

Keywords: infants, traditional healers, primary care givers, traditional medicine

Procedia PDF Downloads 89
6148 Servant Leadership for Elder Care in St. Camillus Health Systems, USA

Authors: Anthoni Jeorge

Abstract:

Throughout the history of the world, servant leadership has been researched, and favourable results such as individual, team, and organizational have been linked to the construct. This research paper designates St. Camillus de Lellis, a practitioner of servant leadership and founder of the Ministers of the Sick as a servant leader in his approach to care for the sick. Service is the visible face of his servant leadership. First of all, despite many challenges, St. Camillus de Lellis practiced leadership by the example of compassionate service to the sick. Second, he made service to the sick the highest priority of his life. Third, Camillus displayed servant leadership such that his manner of leadership gave birth to a New School of Service to the Sick. The paper identifies the distinctive dimensions and essential elements which characterized his service-centered leadership. Furthermore, discuss the six major characteristics of a servant leader as set forth by St. Camillus’s life example. The research illustrates the transformational power of servant leadership infield healthcare in general and, in doing so, provides servant leadership seekers ways servant leadership can transform elder care in one’s own field (St. Camillus Health Systems). Thus, it ascertains that servant leadership is best-fit for humanized elder care. Supported by the review of literature, the paper ascertains that Camillus, by identifying himself with the sick, gained deeper insights concerning the pain and suffering of the population. Uniquely drawn from his true grit, Camillus’ service-centered leadership is value-based, people-oriented, and compassion-filled. His way of service to the sick is the prolongation of gestures of mercy and compassion. It is hoped that the results of this study will help health care workers and servant leadership practitioners to humanize elder care and cultivate servant leadership attitude in their health care services to the sick. By incorporating such service-oriented elements into their leadership orientation, health care workers will be true servant leaders of the sick.

Keywords: leadership, service, healthcare, compassion

Procedia PDF Downloads 168
6147 The Emotional Education in the Development of Intercultural Competences

Authors: Montserrrat Dopico Gonzalez, Ramon Lopez Facal

Abstract:

The development of a critical, open and plural citizenship constitutes one of the main challenges of the school institution in the present multicultural societies. Didactics in Social Sciences has conducted important contributions to the development of active methodologies to promote the development of the intercultural competencies of the student body. Research in intercultural education has demonstrated the efficiency of the cooperative learning techniques to improve the intercultural relations in the classroom. Our study proposes to check the effect that, concerning the development of intercultural competencies of the student body, the emotional education can have in the context of the use of active methodologies such as the learning by projects and the cooperative learning. To that purpose, a programme of intervention based on activities focussed on controversial issues related to cultural diversity has been implemented in several secondary schools. Through a methodology which combines intercultural competence scales with interviews and also with the analysis of the school body’s productions, the persistence of stereotypes against immigration and the efficacy of the introduction of emotional education elements in the development of intercultural competencies have both been observed.

Keywords: active methodologies, didactics in social sciences, intercultural competences, intercultural education

Procedia PDF Downloads 157
6146 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning

Authors: Christina Largent, Tazley Hobbs

Abstract:

Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.

Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent

Procedia PDF Downloads 128