Search results for: redox enzyme
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1050

Search results for: redox enzyme

690 STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C

Authors: Sarah Gaßmeyer, Nadine Hülsemann, Raphael Stoll, Kenji Miyamoto, Robert Kourist

Abstract:

Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.

Keywords: racemase, rational protein design, STD-NMR, structure guided saturation mutagenesis

Procedia PDF Downloads 282
689 Improvement of Activity of β-galactosidase from Kluyveromyces lactis via Immobilization on Polyethylenimine-Chitosan

Authors: Carlos A. C. G. Neto, Natan C. G. e Silva , Thaís de O. Costa, Luciana R. B. Gonçalves, Maria V. P. Rocha

Abstract:

β-galactosidases (E.C. 3.2.1.23) are enzymes that have attracted by catalyzing the hydrolysis of lactose and in producing galacto-oligosaccharides by favoring transgalactosylation reactions. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers is a promising alternative to enhance the stability of the biocatalysts, among which polyethylenimine (PEI) stands out. PEI has certain properties, such as being a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases. Besides that, protects them from environmental variations. The use of chitosan support coated with PEI could improve the catalytic efficiency of β-galactosidase from Kluyveromyces lactis in the transgalactosylation reaction for the production of prebiotics, such as lactulose since this strain is more effective in the hydrolysis reaction. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from K. lactis immobilized on chitosan-coated with PEI, determining the immobilization parameters, its operational and thermal stability, and then to apply it in hydrolysis and transgalactolisation reactions to produce lactulose using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% (v/v) glutaraldehyde and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg protein per gram support. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey supplemented with fructose at a ratio of 1:2 lactose/fructose, totaling 200 g/L. Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6 with 0.1 mM MnCl2. The biocatalyst whose support was coated was named CHI_GLU_PEI_GAL, and the one that was not coated was named CHI_GLU_GAL. The coating of the support with PEI considerably improved the parameters of immobilization. The immobilization yield increased from 56.53% to 97.45%, biocatalyst activity from 38.93 U/g to 95.26 U/g and the efficiency from 3.51% to 6.0% for uncoated and coated support, respectively. The biocatalyst CHI_GLU_PEI_GAL was better than CHI_GLU_GAL in the hydrolysis of lactose and production of lactulose, converting 97.05% of lactose at 5 min of reaction and producing 7.60 g/L lactulose in the same time interval. QUI_GLU_PEI_GAL biocatalyst was stable in the hydrolysis reactions of lactose during the 10 cycles evaluated, converting 73.45% lactose even after the tenth cycle, and in the lactulose production was stable until the fifth cycle evaluated, producing 10.95 g/L lactulose. However, the thermal stability of CHI_GLU_GAL biocatalyst was superior, with a half-life time 6 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (CHI_GLU_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as, the catalytic action of the enzyme. Besides that, this process can be economically viable due to the use of an industrial residue as a substrate.

Keywords: β-galactosidase, immobilization, kluyveromyces lactis, lactulose, polyethylenimine, transgalactosylation reaction, whey

Procedia PDF Downloads 91
688 Effect of Hormones Priming on Enzyme Activity and Lipid Peroxidation in Wheat Seed under Accelerated Aging

Authors: Amin Abbasi, Fariborz Shekari, Seyed Bahman Mousavi

Abstract:

Seed aging during storage is a complex biochemical and physiological processes that can lead to reduce seed germination. This phenomenon associated with increasing of total antioxidant activity during aging. To study the effects of hormones on seed aging, aged wheat seeds (control, 90 and 80% viabilities) were treated with GA3, Salicylic Acid, and paclobutrazol and antioxidant system were investigated as molecular biomarkers for seed vigor. The results showed that, seed priming treatment significantly affected germination percentage, normality seedling percentage, H2O2, MDA, CAT, APX, and GPX activates. Maximum germination percentage achieve in GA3 priming in control treatment. Germination percentage and normal seedling percentage increased in other GA3 priming treatment compared with other hormones. Also aging increased MDA, H2O2 content. MDA is considered sensitive marker commonly used for assessing membrane lipid peroxidation and H2O2result in toxicity to cellular membrane system and damages to plant cells. Amount of H2O2 and MDA declined in GA3 treatment. CAT, GPX and APX activities were reduced by increasing the aging time and at different levels of priming. The highest APX activity was observed in Salicylic Acid control treatment and the highest GPX and CAT activity was obtained in GA3 control treatment. The lowest MDA and H2O2 showed in GA3 control treatment, too. Hormone priming increased Antioxidant enzyme activity and decreased amount of reactive oxygen space and malondialdehyde (MDA) under aging treatment. Also, GA3 priming treatments have a significant effect on germination percentage and number of normal seedling. Generally aging seed, increase ROS and lipid peroxidation. Antioxidant enzymes activity of aged seeds increased after hormone priming.

Keywords: hormones priming, wheat, aging seed, antioxidant, lipid peroxidation

Procedia PDF Downloads 468
687 Variation in Carboxylesterase Activity in Spodoptera litura Fabricious (Noctuidae: Lepidoptera) Populations from India

Authors: V. Karuppaiah, J. C. Padaria, C. Srivastava

Abstract:

The tobacco caterpillar, Spodoptera litura Fab (Lepidoptera: Noctuidae) is a polyphagous pest various field and horticulture crops in India. Pest had virtually developed resistance to all commonly used insecticides. Enhanced detoxification is the prime mechanism that is dictated by detoxification different enzymes and carboxylesterase is one of the major enzyme responsible development of resistance. In India, insecticide resistance studies on S. litura are mainly deployed on detoxification enzymes activity and investigation at gene level alteration i.e. at nucleotide level is very merger. In the present study, we collected the S. litura larvae from three different cauliflower growing belt viz., IARI, New Delhi (Delhi), Palari, Sonepat (Haryana) and Varanasi (Uttar Pradesh) to study the role of carboxylesterase activity and its gene level variation The CarE activity was measured using UV-VIS spectrophotometer with 3rd instar larvae of S. litura. The elevated activity of CarE was observed in Sonepat strain (28.09 ± 0.09 µmol/min/mg of protein) followed by Delhi (26.72 ± 0.04 µmol/min/mg of protein) and Varanasi strain (10.00 ± 0.44 µmol/min/mg of protein) of S. litura. The genomic DNA was isolated from 3rd instar larvae and CarE gene was amplified using a primer sequence, F:5’tccagagttccttgtcaggcac3’; R:5’ctgcatcaagcatgtctc3. CarE gene, about 500bp was partially amplified, sequenced and submitted to NCBI (Accession No. KF835886, KF835887 and KF835888). The sequence data revealed polymorphism at nucleotide level in all the three strains and gene found to have 88 to 97% similarity with previous available nucleotide sequences of S. litura, S. littoralis and S. exiqua. The polymorphism at the nucleotide level could be a reason for differential activity of carboxylesterase enzymes among the strains. However, investigation at gene expression level would be useful to analyze the overproduction of carboxylesterase enzyme.

Keywords: carboxylesterase, CarE gene, nucleotide polymorphism, insecticide resistance, spodoptera litura

Procedia PDF Downloads 901
686 Enzyme Producing Psyhrophilic Pseudomonas app. Isolated from Poultry Meats

Authors: Ali Aydin, Mert Sudagidan, Aysen Coban, Alparslan Kadir Devrim

Abstract:

Pseudomonas spp. (specifically, P. fluorescens and P. fragi) are considered the principal spoilage microorganisms of refrigerated poultry meats. The higher the level psychrophilic spoilage Pseudomonas spp. on carcasses at the end of processing lead to decrease the shelf life of the refrigerated product. The aim of the study was the identification of psychrophilic Pseudomonas spp. having proteolytic and lipolytic activities from poultry meats by 16S rRNA and rpoB gene sequencing, investigation of protease and lipase related genes and determination of proteolytic activity of Pseudomonas spp. In the of isolation procedure, collected chicken meat samples from local markets and slaughterhouses were homogenized and the lysates were incubated on Standard method agar and Skim Milk agar for selection of proteolytic bacteria and tributyrin agar for selection of lipolytic bacteria at +4 °C for 7 days. After detection of proteolytic and lipolytic colonies, the isolates were firstly analyzed by biochemical tests such as Gram staining, catalase and oxidase tests. DNA gene sequencing analysis and comparison with GenBank revealed that 126 strong enzyme Pseudomonas spp. were identified as predominantly P. fluorescens (n=55), P. fragi (n=42), Pseudomonas spp. (n=24), P. cedrina (n=2), P. poae (n=1), P. koreensis (n=1), and P. gessardi (n=1). Additionally, protease related aprX gene was screened in the strains and it was detected in 69/126 strains, whereas, lipase related lipA gene was found in 9 Pseudomonas strains. Protease activity was determined using commercially available protease assay kit and 5 strains showed high protease activity. The results showed that psychrophilic Pseudomonas strains were present in chicken meat samples and they can produce important levels of proteases and lipases for food spoilage to decrease food quality and safety.

Keywords: Pseudomonas, chicken meat, protease, lipase

Procedia PDF Downloads 363
685 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 366
684 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 335
683 Optimization of Biomass Components from Rice Husk Treated with Trichophyton Soudanense and Trichophyton Mentagrophyte and Effect of Yeast on the Bio-Ethanol Yield

Authors: Chukwuma S. Ezeonu, Ikechukwu N. E. Onwurah, Uchechukwu U. Nwodo, Chibuike S. Ubani, Chigozie M. Ejikeme

Abstract:

Trichophyton soudanense and Trichophyton mentagrophyte were isolated from the rice mill environment, cultured and used singly and as di-culture in the treatment of measure quantities of preheated rice husk. Optimized conditions studied showed that carboxymethylcellulase (CMCellulase) activity of 57.61 µg/ml/min was optimum for Trichophyton mentagrophyte heat pretreated rice husk crude enzymes at 50oC and 80oC respectively. Duration of 120 hours (5 days) gave the highest CMcellulase activity of 75.84 µg/ml/min for crude enzyme of Trichophyton mentagrophyte heat pretreated rice husk. However, 96 hours (4 days) duration gave maximum activity of 58.21 µg/ml/min for crude enzyme of Trichophyton soudanense heat pretreated rice husk. Highest CMCellulase activities of 67.02 µg/ml/min and 69.02 µg/ml/min at pH of 5 were recorded for crude enzymes of monocultures of Trichophyton soudanense (TS) and Trichophyton mentagrophyte (TM) heat pretreated rice husk respectively. Biomass components showed that rice husk cooled after heating followed by treatment with Trichophyton mentagrophyte gave 44.50 ± 10.90 (% ± Standard Error of Mean) cellulose as the highest yield. Maximum total lignin value of 28.90 ± 1.80 (% ± SEM) was obtained from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM). The hemicellulose content of 30.50 ± 2.12 (% ± SEM) from pre-heated rice husk treated with Trichophyton soudanense (TS); lignin value of 28.90 ± 1.80 from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM); also carbohydrate content of 16.79 ± 9.14 (% ± SEM) , reducing and non-reducing sugar values of 2.66 ± 0.45 and 14.13 ± 8.69 (% ± SEM) were all obtained from for pre- heated rice husk treated with Trichophyton mentagrophyte (TM). All the values listed above were the highest values obtained from each rice husk treatment. The pre-heated rice husk treated with Trichophyton mentagrophyte (TM) fermented with palmwine yeast gave bio-ethanol value of 11.11 ± 0.21 (% ± Standard Deviation) as the highest yield.

Keywords: Trichophyton soudanense, Trichophyton mentagrophyte, biomass, bioethanol, rice husk

Procedia PDF Downloads 655
682 Potentialities of Onopordum Tauricum (Willd.) as Milk Clotting Agent

Authors: Massimo Mozzon, Nadia Raffaelli

Abstract:

Proteases from herbs, woody plants, and trees are exploited for cheesemaking in several countries, especially in South Europe and West Africa. Particularly, “thistles” belonging to several genera within the Asteraceae family (Cynara, Silybum, Centaurea, Carlina, Cirsium, Onopordum) are traditionally used in Mediterranean countries for clotting raw ewe’s and goat’s milk. For the first time, the clotting performance of an aqueous extract from flowers of Onopordum tauricum Willd. (Taurian thistle, bull cottonthistle) were tested in milk of different origin (cow, goat, ewe). The vegetable material was collected in the Central Apennines range, between the Marche and Umbria regions. A response surface methodology (RSM) approach was used to study the effect of the curdling variables (temperature, pH, amount of enzymatic extract) on the technological performance of the thistle extract. A three-step procedure for the purification of the enzyme (ammonium sulphate precipitation, gel filtration and ion-exchange chromatography) was also carried out. The milk clotting activity (MCA) of O. tauricum crude extracts was strongly affected by temperature, pH and by the interaction between these two variables, according to a second-order response surface model, while the milk/coagulant ratio did not affect in a significant way the clotting properties. Experimental data showed that the addition of 10 mM CaCl2 reduced the clotting time of ewe’s, goat’s, and cow’s milk by about 3-fold, 8-fold, and 14-fold, respectively, at 35°C and pH 6.7-6.8. After purification, an enzymatic preparation very close to homogeneity was obtained, which showed a major band at about 30 kDa when analyzed by SDS-PAGE. The identity of the enzyme as an aspartic protease was confirmed by inhibition studies. Cheese-making trials were carried out to check the scale-up (1 to 5 L of milk; 37 °C; 10 mM CaCl2 fortification) and set the recipe: 35-45% of curd yields were recorded, according to curd cutting and pressing.

Keywords: milk clotting activity, Onopordum tauricum, plant proteases, vegetable rennet

Procedia PDF Downloads 133
681 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water

Authors: Mohamed A. Deyab, Ahmed E. Awadallah

Abstract:

Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.

Keywords: hydrogen production, Mg, wastewater, ionic liquid

Procedia PDF Downloads 132
680 Unique NiO Based 1 D Core/Shell Nano-Heterostructure Electrodes for High-Performance Supercapacitor

Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar

Abstract:

Unique one-dimensional (1D) Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures are fabricated by combining the electrochemical deposition and annealing. The high-performance pseudo-capacitor electrode based on the Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and demonstrated. The Co-Ni/Co3O4-NiO core/shell nano-heterostructures exhibit high specific capacitance (2013 Fg-1 at 2.5 Ag-1), high energy and power density (23 Wh kg-1 and 5.5 kW kg-1, at the discharge current density of 20.8 A g-1.), good capacitance retention, and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the novel nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport.

Keywords: nano-heterostructures, energy storage, supercapacitors, electrochemical deposition

Procedia PDF Downloads 302
679 Metal (Loids) Speciation Using HPLC-ICP-MS Technique in Klodnica River, Upper Silesia, Poland

Authors: Magdalena Jabłońska-Czapla

Abstract:

The work allowed gaining knowledge about redox and speciation changes of As, Cr, and Sb ionic forms in Klodnica River water. This kind of studies never has been conducted in this region of Poland. In study optimized and validated previously HPLC-ICP-MS methods for determination of As, Sb and Cr was used. Separation step was done using high-performance liquid chromatograph equipped with ion-exchange column followed by ICP-MS spectrometer detector. Preliminary studies included determination of the total concentration of As, Sb and Cr, pH, Eh, temperature and conductivity of the water samples. The study was conducted monthly from March to August 2014, at six points on the Klodnica River. The results indicate that exceeded at acceptable concentration of total Cr and Sb was observed in Klodnica River and we should qualify Klodnica River waters below the second purity class. In Klodnica River waters dominates oxidized antimony and arsenic forms, as well as the two forms of chromium Cr(VI) and Cr(III). Studies have also shown the methyl derivative of arsenic's presence.

Keywords: antimony, arsenic, chromium, HPLC-ICP-MS, river water, speciation

Procedia PDF Downloads 394
678 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation

Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet

Abstract:

Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.

Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning

Procedia PDF Downloads 82
677 Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

Authors: Mohammad Faheem, M. Tabish Rehman, Mohd Danishuddin, Asad U. Khan

Abstract:

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

Keywords: ESBL, non-b-lactam-b-lactamase inhibitor, bioinformatics, biomedicine

Procedia PDF Downloads 216
676 Biodegradation of 2,4-Dichlorophenol by Pseudomonas chlororaphis Strain Isolated from Activated Sludge Sample from a Wastewater Treatment Plant in Durban, South Africa

Authors: Boitumelo Setlhare, Mduduzi P. Mokoena, Ademola O. Olaniran

Abstract:

Agricultural and industrial activities have led to increasing production of xenobiotics such as 2,4-dichlorophenol (2,4-DCP), a derivative of 2,4-dichlorophenoxyacetic acid (2,4-D), which is a widely used herbicide. Bioremediation offers an efficient, cost-effective and environmentally friendly method for degradation of the compound through the activities of the various microbial enzymes involved in the catabolic pathway. The aim of this study was to isolate and characterize bacterial isolate indigenous to contaminated sites in Durban, South Africa for 2,4-DCP degradation. One bacterium capable of utilizing 2,4-DCP as sole carbon source was isolated using culture enrichment technique and identified as Pseudomonas chlororaphis strain UFB2 via PCR amplification and analysis of 16S rRNA gene sequence. This isolate was able to degrade up to 75.11% of 2,4-DCP in batch cultures within 10 days, with the degradation rate constant of 0.14 mg/l/d. Phylogenetic analysis revealed the relatedness of this bacterial isolate to other Pseudomonas sp. previously characterized for chlorophenol degradation. PCR amplification of the catabolic genes involved in 2,4-DCP degradation revealed the presence of the correct amplicons for phenol hydroxylase (600 bp), catechol 1,2-dioxygenase (214 bp), muconate isomerase (851 bp), cis-dienelactone hydrolase (577 bp), and trans-dienelactone hydrolase (491 bp) genes. Enzyme assays revealed activity as high as 21840 mU/mg, 15630 mU/mg, 2340 mU/mg and 1490 mU/mg obtained for phenol hydroxylase, catechol 1,2-dioxygenase, cis-dienelactone hydroxylase and trans-dienelactone hydroxylase, respectively. The absence of catechol 2,3-dioxygenase gene and the corresponding enzyme in this isolate suggests that the organism followed ortho-pathway for 2,4-DCP degradation. Furthermore, the absence of malaycetate reductase genes showed that the bacterium may not be able to completely mineralize 2,4-DCP. Further studies are required to optimize 2,4-DCP degradation by this isolate as well as to elucidate the mechanism of 2,4-DCP degradation.

Keywords: biodegradation, catechol 1, 2-dioxygenase, 2, 4-dichlorophenol, phenol hydroxylase, Pseudomonas chlororaphis

Procedia PDF Downloads 227
675 Aminopeptidase P (DAP) Expression Pattern in Drosophila Melanogaster

Authors: Suneeta Gireesh Panicker

Abstract:

Aim: Aminopeptidase P (APP) is an enzyme that has specificity for proline, can specifically cleave Xaa-Proline peptides and is a metallo-aminopeptidase. The bonds nearby to the imino acid proline are tough to cleave by many peptidases, but APP can specifically break peptide bonds engaged with proline. Membrane-bound form and a cytosolic form are the two forms in which this enzyme exists. The exact physiological function of APP remains unclear and hence the present work attempts to determine it. Methods: In the present study, the expression pattern of cytosolic Aminopeptidase P (DAP) was determined in all the embryonic stages and larval stages of wild-type Drosophila by using polyclonal monospecific antibodies. To show the presence of DAP RNA in embryonic and larval stages, RNA in situ hybridization was performed. DAP promoter-LacZ fusion reporter gene vector was used to construct transgenic embryos to study the regulation pattern of DAP. To study the DAP expression profile, a transgenic fly consisting of a DAP promoter with β-gal and GFP reporter genes in front of it was constructed. Results: DAP protein expression was observed in neuroectodermal cells, posterior midgut primordium, proctodeum, ventral neuroblast and primordial stomatogastric nervous system. It was observed in the ventral cord and midgut in stage 12. The completely developed embryos showed the intense occurrence of it in the ventral cord and gut region. The eye-antennal disc, wing disc and leg disc also showed the presence of DAP protein. LacZ expression in transgenic embryos also showed the same pattern. Conclusion: Similar to various known multiple-functional proteins, DAP could be one with different functions at different stages and in different cells. Data presented here designates DAP functions in the early embryonic and imaginal dics differentiation and development, suggesting that it may be required for the metabolism of proteins like neuropeptides and tachykinins.

Keywords: aminopeptidase P, in situ hybridization, transgenic fly, embryonic stages

Procedia PDF Downloads 57
674 Identification of the Key Enzyme of Roseoflavin Biosynthesis

Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack

Abstract:

The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.

Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2

Procedia PDF Downloads 220
673 Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25

Authors: Rashida Rahmat Zohra, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides.

Keywords: Bacillus licheniformis, dextranase, gel permeation chromatograpy, enzyme purification, enzyme kinetics

Procedia PDF Downloads 417
672 Screening and Optimization of Conditions for Pectinase Production by Aspergillus Flavus

Authors: Rumaisa Shahid, Saad Aziz Durrani, Shameel Pervez, Ibatsam Khokhar

Abstract:

Food waste is a prevalent issue in Pakistan, with over 40 percent of food discarded annually. Despite their decay, rotting fruits retain residual nutritional value consumed by microorganisms, notably fungi and bacteria. Fungi, preferred for their extracellular enzyme release, are gaining prominence, particularly for pectinase production. This enzyme offers several advantages, including clarifying juices by breaking down pectic compounds. In this study, three Aspergillus flavus isolates derived from decomposed fruits and manure were selected for pectinase production. The primary aim was to isolate fungi from diverse waste sources, identify the isolates and assess their capacity for pectinase production. The identification was done through morphological characteristics with the help of Light microscopy and Scanning Electron Microscopy (SEM). Pectinolytic potential was screened using pectin minimal salt agar (PMSA) medium, comparing clear zone diameters among isolates. Identification relied on morphological characteristics. Optimizing substrate (lemon and orange peel powder) concentrations, pH, temperature, and incubation period aimed to enhance pectinase yield. Spectrophotometry enabled quantitative analysis. The temperature was set at room temperature (28 ºC). The optimal conditions for Aspergillus flavus strain AF1(isolated from mango) included a pH of 5, an incubation period of 120 hours, and substrate concentrations of 3.3% for orange peels and 6.6% for lemon peels. For AF2 and AF3 (both isolated from soil), the ideal pH and incubation period were the same as AF1 i.e. pH 5 and 120 hours. However, their optimized substrate concentrations varied, with AF2 showing maximum activity at 3.3% for orange peels and 6.6% for lemon peels, while AF3 exhibited its peak activity at 6.6% for orange peels and 8.3% for lemon peels. Among the isolates, AF1 demonstrated superior performance under these conditions, comparatively.

Keywords: pectinase, lemon peel, orange peel, aspergillus flavus

Procedia PDF Downloads 41
671 Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry

Authors: Rupesh K. Mishra, Gaëlle Catanante, Akhtar Hayat, Jean-Louis Marty

Abstract:

Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples.

Keywords: ochratoxin A, cocoa, DNA aptamer, labelled probe

Procedia PDF Downloads 261
670 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes

Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta

Abstract:

Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.

Keywords: tillage, soil respiration, MBC, fungal-bacterial activity

Procedia PDF Downloads 234
669 Modified Poly (Pyrrole) Film-Based Biosensors for Phenol Detection

Authors: S. Korkut, M. S. Kilic, E. Erhan

Abstract:

In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly (Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.

Keywords: carbon nanotube, phenol biosensor, polypyrrole, poly (glutaraldehyde)

Procedia PDF Downloads 392
668 Ethanolamine Detection with Composite Films

Authors: S. A. Krutovertsev, A. E. Tarasova, L. S. Krutovertseva, O. M. Ivanova

Abstract:

The aim of the work was to get stable sensitive films with good sensitivity to ethanolamine (C2H7NO) in air. Ethanolamine is used as adsorbent in different processes of gas purification and separation. Besides it has wide industrial application. Chemical sensors of sorption type are widely used for gas analysis. Their behavior is determined by sensor characteristics of sensitive sorption layer. Forming conditions and characteristics of chemical gas sensors based on nanostructured modified silica films activated by different admixtures have been studied. As additives molybdenum containing polyoxometalates of the eighteen series were incorporated in silica films. The method of hydrolythic polycondensation from tetraethyl orthosilicate solutions was used for forming such films in this work. The method’s advantage is a possibility to introduce active additives directly into an initial solution. This method enables to obtain sensitive thin films with high specific surface at room temperature. Particular properties make polyoxometalates attractive as active additives for forming of gas-sensitive films. As catalyst of different redox processes, they can either accelerate the reaction of the matrix with analyzed gas or interact with it, and it results in changes of matrix’s electrical properties Polyoxometalates based films were deposited on the test structures manufactured by microelectronic planar technology with interdigitated electrodes. Modified silica films were deposited by a casting method from solutions based on tetraethyl orthosilicate and polyoxometalates. Polyoxometalates were directly incorporated into initial solutions. Composite nanostructured films were deposited by drop casting method on test structures with a pair of interdigital metal electrodes formed at their surface. The sensor’s active area was 4.0 x 4.0 mm, and electrode gap was egual 0.08 mm. Morphology of the layers surface were studied with Solver-P47 scanning probe microscope (NT-MDT, Russia), the infrared spectra were investigated by a Bruker EQUINOX 55 (Germany). The conditions of film formation varied during the tests. Electrical parameters of the sensors were measured electronically in real-time mode. Films had highly developed surface with value of 450 m2/g and nanoscale pores. Thickness of them was 0,2-0,3 µm. The study shows that the conditions of the environment affect markedly the sensors characteristics, which can be improved by choosing of the right procedure of forming and processing. Addition of polyoxometalate into silica film resulted in stabilization of film mass and changed markedly of electrophysical characteristics. Availability of Mn3P2Mo18O62 into silica film resulted in good sensitivity and selectivity to ethanolamine. Sensitivity maximum was observed at weight content of doping additive in range of 30–50% in matrix. With ethanolamine concentration changing from 0 to 100 ppm films’ conductivity increased by 10-12 times. The increase of sensor’s sensitivity was received owing to complexing reaction of tested substance with cationic part of polyoxometalate. This fact results in intramolecular redox reaction which sharply change electrophysical properties of polyoxometalate. This process is reversible and takes place at room temperature.

Keywords: ethanolamine, gas analysis, polyoxometalate, silica film

Procedia PDF Downloads 190
667 Developing Novel Bacterial Primase (DnaG) Inhibitors

Authors: Shanakr Bhattarai, V. S. Tiwari, Barak Akabayov

Abstract:

The plummeting number of infections and death is due to the development of drug-resistant bacteria. In addition, the number of approved antibiotic drugs by the Food and Drug Administration (FDA) is insufficient. Therefore, developing new drugs and finding novel targets for central metabolic pathways in bacteria is urgently needed. One of the promising targets is DNA replication machinery which consists of many essential proteins and enzymes. DnaG primase is an essential enzyme and a central part of the DNA replication machinery. DnaG primase synthesizes short RNA primers that initiate the Okazaki fragments by the lagging strand DNA polymerase. Therefore, it is reasonable to assume that inhibition of primase activity will stall DNA replication and prevent bacterial proliferation. We did the expression and purification of eight different bacterial DnaGs (Mycobacterium tuberculosis(Mtb), Bacillus anthracis (Ba), Mycobacterium smegmatis (Msmeg), Francisella tularencis (Ft), Vibrio cholerae (Vc) and Yersinia pestis (Yp), Staphylococcus aureus(Saureus), Escherichia coli(Ecoli)) followed by the radioactive activity assay. After obtaining the pure and active protein DnaG, we synthesized the inhibitors for them. The inhibitors were divided into five different groups, each containing five molecules, and the cocktail inhibition assay was performed against each DnaGs. The groups of molecules inhibiting the DnaGs were further tested with individual molecules belonging to inhibiting groups. Each molecule showing inhibition was titrated against the corresponding DnaGs to find IC50. We got a molecule(VS167) that acted as broad inhibitors, inhibiting all eight DnaGs. Molecules VS180 and VS186 inhibited seven DnaGs (except Saureus). Similarly, two molecules(VS 173, VS176) inhibited five DnaGs (Mtb, Ba, Ft, Yp, Ecoli). VS261 inhibited four DnaGs (Mtb, Ba, Ft, Vc). MS50 inhibited Ba and Vc DnaGs. And some of the inhibitors inhibited only one DnaGs. Thus we found the broad and specific inhibitors for different bacterial DnaGs, and their Structure-activity analysis(SAR) was done. Further, We tried to explain the similarities among the enzyme DnaGs from different bacteria based on their inhibition pattern.

Keywords: DNA replication, DnaG, okazaki fragments, antibiotic drugs

Procedia PDF Downloads 72
666 Bioconversion of Kitchen Waste to Bio-Ethanol for Energy Security and Solid Waste Management

Authors: Sanjiv Kumar Soni, Chetna Janveja

Abstract:

The approach of utilizing zero cost kitchen waste residues for growing suitable strains of fungi for the induction of a cocktail of hydrolytic enzymes and ethanol generation has been validated in the present study with the objective of developing an indigenous biorefinery for low cost bioethanol production with the generation of zero waste. Solid state fermentation has been carried out to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the co-production of multiple carbohydrases including cellulases, hemicellulases, pectinase and amylases by a locally isolated strain of Aspergillus niger C-5. Of all the residues, potato peels induced the maximum yields of all the enzyme components corresponding to 64.0±1.92 IU of CMCase, 17.0±0.54 IU of FPase , 42.8±1.28 IU of β-glucosidase, 990.0±28.90 IU of xylanase, 53.2±2.12 IU of mannanase, 126.0±3.72 IU of pectinase, 31500.0±375.78 IU of α-amylase and 488.8±9.82 IU of glucoamylase/g dry substrate respectively. Saccharification of various kitchen refuse residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses by Saccharomyces cerevisae, ethanol yields ranging from 80-262 mL/ kg of dry residues were obtained. The study has successfully evaluated the valorization of kitchen garbage, a highly biodegradable component in Municipal Solid Waste by using it as a substrate for the in-house co-production of multiple carbohydrases and employing the steam treated residues as a feed stock for bioethanol production. Such valorization of kitchen garbage may reduce the level of Municipal Solid Waste going into land-fills thus lowering the emissions of greenhouse gases. Moreover, the solid residue left after the bioconversion may be used as a biofertilizer for improving the fertility of the soils.

Keywords: kitchen waste, bioethanol, solid waste, bioconversion, waste management

Procedia PDF Downloads 374
665 Evaluation of Microwave-Assisted Pretreatment for Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

Waste materials from a wide range of agro-industrial processes may be used as substrates for microbial growth, and subsequently the production of a range of high value products and bioenergy. In addition, utilization of these agro-residues in bioprocesses has the dual advantage of providing alternative substrates, as well as solving their disposal problems. Spent coffee grounds (SCG) are a by-product (45%) of coffee processing. SCG is a lignocellulosic material, which is composed mainly of cellulose, hemicelluloses, and lignin. Thus, a pretreatment process is required to facilitate an efficient enzymatic hydrolysis of such carbohydrates. In this context, microwave pretreatment of lignocellulosic biomass without the addition of harsh chemicals represents a green technology. Moreover, microwave treatment has a high heating efficiency and is easy to implement. Thus, microwave pretreatment of SCG without adding of harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, microwave pretreatment experiments were conducted on SCG at varying power levels (100, 250, 440, 600, and 1000 W) for 60 s. By increasing microwave power to a certain level (which vary by varying biomass), reducing sugar increases, then reducing sugar from biomass start to decrease with microwave power increase beyond this level. Microwave pretreatment of SCG at 60s followed by enzymatic hydrolysis resulted in total reducing sugars of 91.6 ± 7.0 mg/g of biomass (at microwave power of 100 w). Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose using microwave was found to be an effective and energy efficient technology to improve saccharification and glucose yield. Energy performance will be evaluated for the microwave pretreatment, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol and other high value products.

Keywords: lignocellulose, microwave, pretreatment, spent coffee grounds

Procedia PDF Downloads 387
664 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing

Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa

Abstract:

CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.

Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology

Procedia PDF Downloads 77
663 Chemical Synthesis, Electrical and Antibacterial Properties of Polyaniline/Gold Nanocomposites

Authors: L. N. Shubha, M. Kalpana, P. Madhusudana Rao

Abstract:

Polyaniline/gold (PANI/Au) nanocomposite was prepared by in-situ chemical oxidation polymerization method. The synthesis involved the formation of polyaniline-gold nanocomposite, by in-situ redox reaction and the dispersion of gold nano particles throughout the polyaniline matrix. The nanocomposites were characterized by XRD, FTIR, TEM and UV-visible spectroscopy. The characteristic peaks in FTIR and UV-visible spectra confirmed the expected structure of polymer as reported in the literature. Further, transmission electron microscopy (TEM) confirmed the formation of gold nano particles. The crystallite size of 30 nm for nanoAu was supported by the XRD pattern. Further, the A.C. conductivity, dielectric constant (€’(w)) and dielectric loss (€’’(w)) of PANI/Au nano composite was measured using impedance analyzer. The effect of doping on the conductivity was investigated. The antibacterial activity was examined for this nano composite and it was observed that PANI/Au nanocomposite could be used as an antibacterial agent.

Keywords: AC-conductivity, anti-microbial activity, dielectric constant, dielectric loss, polyaniline/gold (PANI/AU) nanocomposite

Procedia PDF Downloads 358
662 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions

Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding

Abstract:

By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.

Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals

Procedia PDF Downloads 190
661 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles

Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.

Abstract:

A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.

Keywords: bioavailability, heavy metals, nanoparticles, remediation

Procedia PDF Downloads 160