Search results for: predictive modlleing
655 Attention Problems among Adolescents: Examining Educational Environments
Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgianna Duarte
Abstract:
This study investigated the attention problems with the instrument of Achenbach System of Empirically Based Assessment (ASEBA). Two thousand eight hundred and ninety-four adolescents were surveyed by using a stratified sampling method. We examined the relationships between relevant background variables and attention problems. Multiple regression models were applied to analyze the data. Relevant variables such as sports activities, hobbies, age, grade and the number of close friends were included in this study as predictive variables. The analysis results indicated that educational environments and extracurricular activities are important factors which influence students’ attention problems.Keywords: adolescents, ASEBA, attention problems, educational environments, stratified sampling
Procedia PDF Downloads 284654 A Prospective Neurosurgical Registry Evaluating the Clinical Care of Traumatic Brain Injury Patients Presenting to Mulago National Referral Hospital in Uganda
Authors: Benjamin J. Kuo, Silvia D. Vaca, Joao Ricardo Nickenig Vissoci, Catherine A. Staton, Linda Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Lydia Nanjula, Christine Muhumuza, Henry E. Rice, Gerald A. Grant, Michael M. Haglund
Abstract:
Background: Traumatic Brain Injury (TBI) is disproportionally concentrated in low- and middle-income countries (LMICs), with the odds of dying from TBI in Uganda more than 4 times higher than in high income countries (HICs). The disparities in the injury incidence and outcome between LMICs and resource-rich settings have led to increased health outcomes research for TBIs and their associated risk factors in LMICs. While there have been increasing TBI studies in LMICs over the last decade, there is still a need for more robust prospective registries. In Uganda, a trauma registry implemented in 2004 at the Mulago National Referral Hospital (MNRH) showed that RTI is the major contributor (60%) of overall mortality in the casualty department. While the prior registry provides information on injury incidence and burden, it’s limited in scope and doesn’t follow patients longitudinally throughout their hospital stay nor does it focus specifically on TBIs. And although these retrospective analyses are helpful for benchmarking TBI outcomes, they make it hard to identify specific quality improvement initiatives. The relationship among epidemiology, patient risk factors, clinical care, and TBI outcomes are still relatively unknown at MNRH. Objective: The objectives of this study are to describe the processes of care and determine risk factors predictive of poor outcomes for TBI patients presenting to a single tertiary hospital in Uganda. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Research Electronic Data Capture (REDCap) was used to systematically collect variables spanning 8 categories. Univariate and multivariate analysis were conducted to determine significant predictors of mortality. Results: 563 TBI patients were enrolled from 1 June – 30 November 2016. 102 patients (18%) received surgery, 29 patients (5.1%) intended for surgery failed to receive it, and 251 patients (45%) received non-operative management. Overall mortality was 9.6%, which ranged from 4.7% for mild and moderate TBI to 55% for severe TBI patients with GCS 3-5. Within each TBI severity category, mortality differed by management pathway. Variables predictive of mortality were TBI severity, more than one intracranial bleed, failure to receive surgery, high dependency unit admission, ventilator support outside of surgery, and hospital arrival delayed by more than 4 hours. Conclusions: The overall mortality rate of 9.6% in Uganda for TBI is high, and likely underestimates the true TBI mortality. Furthermore, the wide-ranging mortality (3-82%), high ICU fatality, and negative impact of care delays suggest shortcomings with the current triaging practices. Lack of surgical intervention when needed was highly predictive of mortality in TBI patients. Further research into the determinants of surgical interventions, quality of step-up care, and prolonged care delays are needed to better understand the complex interplay of variables that affect patient outcome. These insights guide the development of future interventions and resource allocation to improve patient outcomes.Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury
Procedia PDF Downloads 235653 Using Mining Methods of WEKA to Predict Quran Verb Tense and Aspect in Translations from Arabic to English: Experimental Results and Analysis
Authors: Jawharah Alasmari
Abstract:
In verb inflection, tense marks past/present/future action, and aspect marks progressive/continues perfect/completed actions. This usage and meaning of tense and aspect differ in Arabic and English. In this research, we applied data mining methods to test the predictive function of candidate features by using our dataset of Arabic verbs in-context, and their 7 translations. Weka machine learning classifiers is used in this experiment in order to examine the key features that can be used to provide guidance to enable a translator’s appropriate English translation of the Arabic verb tense and aspect.Keywords: Arabic verb, English translations, mining methods, Weka software
Procedia PDF Downloads 272652 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management
Authors: Arun Prasad Jaganathan
Abstract:
In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling
Procedia PDF Downloads 58651 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 255650 Islamic Extremist Groups' Usage of Populism in Social Media to Radicalize Muslim Migrants in Europe
Authors: Muhammad Irfan
Abstract:
The rise of radicalization within Islam has spawned a new era of global terror. The battlefield Successes of ISIS and the Taliban are fuelled by an ideological war waged, largely and successfully, in the media arena. This research will examine how Islamic extremist groups are using media modalities and populist narratives to influence migrant Muslim populations in Europe towards extremism. In 2014, ISIS shocked the world in exporting horrifically graphic forms of violence on social media. Their Muslim support base was largely disgusted and reviled. In response, they reconfigured their narrative by introducing populist 'hooks', astutely portraying the Muslim populous as oppressed and exploited by unjust, corrupt autocratic regimes and Western power structures. Within this crucible of real and perceived oppression, hundreds of thousands of the most desperate, vulnerable and abused migrants left their homelands, risking their lives in the hope of finding peace, justice, and prosperity in Europe. Instead, many encountered social stigmatization, detention and/or discrimination for being illegal migrants, for lacking resources and for simply being Muslim. This research will examine how Islamic extremist groups are exploiting the disenfranchisement of these migrant populations and using populist messaging on social media to influence them towards violent extremism. ISIS, in particular, formulates specific encoded messages for newly-arriving Muslims in Europe, preying upon their vulnerability. Violence is posited, as a populist response, to the tyranny of European oppression. This research will analyze the factors and indicators which propel Muslim migrants along the spectrum from resilience to violence extremism. Expected outcomes are identification of factors which influence vulnerability towards violent extremism; an early-warning detection framework; predictive analysis models; and de-radicalization frameworks. This research will provide valuable tools (practical and policy level) for European governments, security stakeholders, communities, policy-makers, and educators; it is anticipated to contribute to a de-escalation of Islamic extremism globally.Keywords: populism, radicalization, de-radicalization, social media, ISIS, Taliban, shariah, jihad, Islam, Europe, political communication, terrorism, migrants, refugees, extremism, global terror, predictive analysis, early warning detection, models, strategic communication, populist narratives, Islamic extremism
Procedia PDF Downloads 119649 QoS-CBMG: A Model for e-Commerce Customer Behavior
Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani
Abstract:
An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining
Procedia PDF Downloads 416648 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis
Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed
Abstract:
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity
Procedia PDF Downloads 457647 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery
Authors: Marlin Mubarak
Abstract:
Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.
Procedia PDF Downloads 353646 Contribution to the Decision-Making Process for Selecting the Suitable Maintenance Policy
Authors: Nasser Y. Mahamoud, Pierre Dehombreux, Hassan E. Robleh
Abstract:
Industrial companies may be confronted with questions about their choice of maintenance policy. This choice must be guided by several numbers of decision criteria or objectives related to their production or service activities but also to their level of development and their investment prospects. A decision-support methodology to choose a maintenance policy (corrective, systematic or conditional preventive, predictive, opportunistic or not) is proposed to facilitate this choice using the main categories of the most important decision criteria. The different steps of this methodology are illustrated using theoretical case: identification of the different maintenance alternatives, determining the structure of the most important categories of the decision criteria, assessing the different maintenance policies on to the criteria by using an ordinal preference relation, and finally ranking the different maintenance policies.Keywords: maintenance policy, decision criteria, decision-making process, AHP
Procedia PDF Downloads 332645 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis
Procedia PDF Downloads 256644 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 38643 Reductive Control in the Management of Redundant Actuation
Authors: Mkhinini Maher, Knani Jilani
Abstract:
We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented. The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a -geometric- distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement. Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.Keywords: mobile robot, actuation, redundancy, omnidirectional, inverse pseudo moore-penrose, reductive control
Procedia PDF Downloads 510642 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device
Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung
Abstract:
Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure
Procedia PDF Downloads 519641 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 182640 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models
Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu
Abstract:
This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making
Procedia PDF Downloads 48639 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 177638 Psycho-social Antecedents of Goal Setting and Self-Control of Thai University Students
Authors: Duchduen Bhanthumnavin
Abstract:
One of the most important characteristics to increase competitive ability in undergraduate students after post COVID-19 era is goal setting and self-control. This correlational study aimes at investigating the influence of psycho-social antecedents on goal setting and self-control in 550 Thai university students. Results from multiple regression analysis revealed that the important predictors of this characteristic were reasoning ability, psychological immunity, attitudes toward competition, core self-evaluation, and family nurture, which yielded 54.28 predictive percentage in the total sample. Moreover, the analysis identified three at-risk groups, namely, male students, low GPA students, and students with siblings. Discussion and implications in general and for specific purposes for the at-risk groups were offered.Keywords: antecedents, plan and self-control, predictors, university students
Procedia PDF Downloads 63637 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 487636 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force
Authors: P. Kooche Baghy, S. Eskandari, E.javanmard
Abstract:
Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.Keywords: artificial neural network, Bayesian, cold rolling, force evaluation
Procedia PDF Downloads 442635 Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Tchina, H. Kebir
Abstract:
This study concerned the dynamic behavior of the wind turbine rotor. Before all, we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue. We also studied the movement of the longitudinal cracked rotor in order to determine stress, strain and displacement. Moreover, to study the issues of cracks in the critical zone ABAQUS software is used, which based to the finite element to give the results. In the first we compared the first six modes shapes between cracking and uncracking of HAWT rotor. In the second part, we show the evolution of six first naturals frequencies with longitudinal crack propagation. Finally, we conclude that the residual change in the naturals frequencies can be used as in shaft crack diagnosis predictive maintenance.Keywords: wind turbine rotor, natural frequencies, longitudinal crack growth, life time
Procedia PDF Downloads 584634 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach
Authors: D. Tedesco, G. Feletti, P. Trucco
Abstract:
The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection
Procedia PDF Downloads 90633 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials
Authors: Marc Sader, Michiel Stock, Bernard De Baets
Abstract:
Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.Keywords: adsorption, predictive modeling, QSAR, random forest
Procedia PDF Downloads 227632 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 122631 Moral Rights: Judicial Evidence Insufficiency in the Determination of the Truth and Reasoning in Brazilian Morally Charged Cases
Authors: Rainner Roweder
Abstract:
Theme: The present paper aims to analyze the specificity of the judicial evidence linked to the subjects of dignity and personality rights, otherwise known as moral rights, in the determination of the truth and formation of the judicial reasoning in cases concerning these areas. This research is about the way courts in Brazilian domestic law search for truth and handles evidence in cases involving moral rights that are abundant and important in Brazil. The main object of the paper is to analyze the effectiveness of the evidence in the formation of judicial conviction in matters related to morally controverted rights, based on the Brazilian, and as a comparison, the Latin American legal systems. In short, the rights of dignity and personality are moral. However, the evidential legal system expects a rational demonstration of moral rights that generate judicial conviction or persuasion. Moral, in turn, tends to be difficult or impossible to demonstrate in court, generating the problem considered in this paper, that is, the study of the moral demonstration problem as proof in court. In this sense, the more linked to moral, the more difficult to be demonstrated in court that right is, expanding the field of judicial discretion, generating legal uncertainty. More specifically, the new personality rights, such as gender, and their possibility of alteration, further amplify the problem being essentially an intimate manner, which does not exist in the objective, rational evidential system, as normally occurs in other categories, such as contracts. Therefore, evidencing this legal category in court, with the level of security required by the law, is a herculean task. It becomes virtually impossible to use the same evidentiary system when judging the rights researched here; therefore, it generates the need for a new design of the evidential task regarding the rights of the personality, a central effort of the present paper. Methodology: Concerning the methodology, the Method used in the Investigation phase was Inductive, with the use of the comparative law method; in the data treatment phase, the Inductive Method was also used. Doctrine, Legislative, and jurisprudential comparison was the technique research used. Results: In addition to the peculiar characteristics of personality rights that are not found in other rights, part of them are essentially linked to morale and are not objectively verifiable by design, and it is necessary to use specific argumentative theories for their secure confirmation, such as interdisciplinary support. The traditional pragmatic theory of proof, for having an obvious objective character, when applied in the rights linked to the morale, aggravates decisionism and generates legal insecurity, being necessary its reconstruction for morally charged cases, with the possible use of the “predictive theory” ( and predictive facts) through algorithms in data collection and treatment.Keywords: moral rights, proof, pragmatic proof theory, insufficiency, Brazil
Procedia PDF Downloads 109630 Analysis of the Relations between Obsessive Compulsive Symptoms and Anxiety Sensitivity in Adolescents: Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the predictive effect of anxiety sensitivity on obsessive compulsive symptoms. The sample of the study consists of 542 students selected with appropriate sampling method from the secondary and high schools in Erzurum city center. Obsessive Compulsive Inventory and Anxiety Sensitivity Index were used in the study to collect data. The data obtained through the study was analyzed with structural equation modeling. As a result of the study, it was determined that there is a significant relationship between obsessive Compulsive Disorder (OCD) and anxiety sensitivity. Anxiety sensitivity has direct and indirect meaningful effects on the latent variable of OCD in the sub-dimensions of doubting-checking, obsessing, hoarding, washing, ordering, and mental neutralizing, and also anxiety sensitivity is a significant predictor of obsessive compulsive symptoms.Keywords: obsession, compulsion, structural equation, anxiety sensitivity
Procedia PDF Downloads 536629 Insights into the Perception of Sustainable Technology Adoption among Malaysian Small and Medium-Sized Enterprises
Authors: Majharul Talukder, Ali Quazi
Abstract:
The use of sustainable technology is being increasingly driven by the demand for saving resources, long-term cost savings, and protecting the environment. A transitional economy such as Malaysia is an example where traditional technologies are being replaced by sustainable ones. The antecedents that are driving Malaysian SMEs to integrate sustainable technology into their business operations have not been well researched. This paper addresses this gap in our knowledge through an examination of attitudes and ethics as antecedents of acceptance of sustainable technology among Malaysian SMEs. The database comprised 322 responses that were analysed using the PLS-SEM path algorithm. Results indicated that effective and altruism attitudes have high predictive ability for the usage of sustainable technology in Malaysian SMEs. This paper identifies the implications of the findings, along with the major limitations of the research and explores future areas of research in this field.Keywords: sustainable technology, innovation management, Malaysian SMEs, organizational attitudes and ethical belief
Procedia PDF Downloads 331628 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.Keywords: experimental design, octane, speed of sound, toluene
Procedia PDF Downloads 273627 A Review on Predictive Sound Recognition System
Authors: Ajay Kadam, Ramesh Kagalkar
Abstract:
The proposed research objective is to add to a framework for programmed recognition of sound. In this framework the real errand is to distinguish any information sound stream investigate it & anticipate the likelihood of diverse sounds show up in it. To create and industrially conveyed an adaptable sound web crawler a flexible sound search engine. The calculation is clamor and contortion safe, computationally productive, and hugely adaptable, equipped for rapidly recognizing a short portion of sound stream caught through a phone microphone in the presence of frontal area voices and other predominant commotion, and through voice codec pressure, out of a database of over accessible tracks. The algorithm utilizes a combinatorial hashed time-recurrence group of stars examination of the sound, yielding ordinary properties, for example, transparency, in which numerous tracks combined may each be distinguished.Keywords: fingerprinting, pure tone, white noise, hash function
Procedia PDF Downloads 322626 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents
Authors: M. Ouassaf, S. Belaid
Abstract:
A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR
Procedia PDF Downloads 156