Search results for: performing venue
813 Generic Model for Timetabling Problems by Integer Linear Programmimg Approach
Authors: Nur Aidya Hanum Aizam, Vikneswary Uvaraja
Abstract:
The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming model to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describe about creating a general model which solve different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling
Procedia PDF Downloads 438812 An Investigation on Orthopedic Rehabilitation by Avoiding Thermal Necrosis
Authors: R. V. Dahibhate, A. B. Deoghare, P. M. Padole
Abstract:
Maintaining natural integrity of biosystem is paramount significant for orthopedic surgeon while performing surgery. Restoration is challenging task to rehabilitate trauma patient. Drilling is an inevitable procedure to fix implants. The task leads to rise in temperature at the contact site which intends to thermal necrosis. A precise monitoring can avoid thermal necrosis. To accomplish it, data acquiring instrument is integrated with the drill bit. To contemplate it, electronic feedback system is developed. It not only measures temperature without any physical contact in between measuring device and target but also visualizes the site and monitors correct movement of tool path. In the current research work an infrared thermometer data acquisition system is used which monitors variation in temperature at the drilling site and a camera captured movement of drill bit advancement. The result is presented in graphical form which represents variations in temperature, drill rotation and time. A feedback system helps in keeping drill speed in threshold limit.Keywords: thermal necrosis, infrared thermometer, drilling tool, feedback system
Procedia PDF Downloads 232811 On Demand Transport: Feasibility Study - Local Needs and Capabilities within the Oran Wilaya
Authors: Nadjet Brahmia
Abstract:
The evolution of urban forms, the new aspects of mobility, the ways of life and economic models make public transport conventional collective low-performing on the majority of largest Algerian cities, particularly in the west of Algeria. On the other side, the information and communication technologies (ICT) open new eventualities to develop a new mode of transport which brings together both the tenders offered by the public service collective and those of the particular vehicle, suitable for urban requirements, social and environmental. Like the concrete examples made in the international countries in terms of on-demand transport systems (ODT) more particularly in the developed countries, this article has for objective the opportunity analysis to establish a service of ODT at the level of a few towns of Oran Wilaya, such a service will be subsequently spread on the totality of the Wilaya if not on the whole of Algeria. In this context, we show the different existing means of transport in the current network whose aim to illustrate the points of insufficiency accented in the present transport system, then we discuss the solutions that may exhibit a service of ODT to the problem studied all around the transport sector, to carry at the end to highlight the capabilities of ODT replying to the transformation of mobilities, this in the light of well-defined cases.Keywords: mobility, on-demand transport, public transport collective, transport system
Procedia PDF Downloads 359810 A Literature Review of Emotional Labor and Non-Task Behavior
Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim
Abstract:
This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. In addition, in existing studies, deep acting and surface acting are highly related to a positive outcome variable and a negative outcome variable, respectively. It was confirmed that for employees performing emotional labor, deep acting and surface acting are highly related to OCB and CWB, respectively. While positive emotion that employees come to experience during job performance process can easily trigger a positive non-task behavior such as OCB, negative emotion that employees experience through excessive workload or unfair treatment can easily induce a negative behavior like CWB. The two management behaviors of emotional labor, surface acting and deep acting, can have either a positive or negative effect on non-task behavior of employees, depending on which one they would choose. Thus, the purpose of this review paper is to clarify the relationship between emotional labor and non-task behavior more specifically.Keywords: emotion labor, non-task behavior, OCB, CWB
Procedia PDF Downloads 351809 Analysis of Human Mental and Behavioral Models for Development of an Electroencephalography-Based Human Performance Management System
Authors: John Gaber, Youssef Ahmed, Hossam A. Gabbar, Jing Ren
Abstract:
Accidents at Nuclear Power Plants (NPPs) occur due to various factors, notable among them being poor safety management and poor safety culture. During abnormal situations, the likelihood of human error is many-fold higher due to the higher cognitive workload. The most common cause of human error and high cognitive workload is mental fatigue. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue using an EEG system. This requires an analysis of the mental model of the NPP operator, changes in brain wave power in response to certain stimuli, and the risk factors on mental fatigue and attention that NPP operators face when performing their tasks. We analyzed these factors and developed an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention hinders their ability to maintain safety.Keywords: brain imaging, EEG, power plant operator, psychology
Procedia PDF Downloads 105808 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 91807 Image Encryption Using Eureqa to Generate an Automated Mathematical Key
Authors: Halima Adel Halim Shnishah, David Mulvaney
Abstract:
Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation
Procedia PDF Downloads 485806 Role of Digital Economy in the Emerging Countries Like Nigeria
Authors: Aminu Fagge Muhammad
Abstract:
The digital economy is fast becoming the most innovative and widest reaching economy in the world, especially in developing countries. The paper aimed at examining role of digital economy in the emerging countries like Nigeria. The methodology used in the study is Business Model Perspective: lying between the process and structural perspectives, bring in the idea of the new business models that are being enabled e.g. e-business or e-commerce. The paper concluded that, the policy objectives and measures, and processes and structures necessary to enhance digital economy growth and its contribution to socio-economic development. The finding reveals that, digital infrastructure is in part incomplete, costly and poorly-performing in emerging economies like Nigeria. The wider digital ecosystem suffers a shortfall in human capabilities, weak financing, and poor governance. It is also found that, Growth in the digital economy is exacerbating digital exclusion, inequality, adverse incorporation and other digital harms. It is recommended that, government in partnership with private sector should build strong local infrastructure to enable broadband availability and accessibility and to create an enabling environment for strong competition in the telecom and technology ecosystem.Keywords: Digital Economy, Emerging Countries, Business Model , Nigeria
Procedia PDF Downloads 129805 KSVD-SVM Approach for Spontaneous Facial Expression Recognition
Authors: Dawood Al Chanti, Alice Caplier
Abstract:
Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation
Procedia PDF Downloads 308804 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network
Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy
Abstract:
Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.Keywords: encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast
Procedia PDF Downloads 411803 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base
Authors: Joanna Wielochowska, Aneta Wielochowska
Abstract:
Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia
Procedia PDF Downloads 126802 Documenting the Undocumented: Performing Counter-Narratives on Citizenship
Authors: Luis Pascasio
Abstract:
In a time when murky debates on US immigration policy are polarizing a nation steeped in partisan and nativist politics, certain media texts are proposing to challenge the dominant ways in which immigrant discourses are shaped in political debates. The paper will examine how two media texts perform counter-hegemonic discourses against institutionalized concepts on citizenship. The article looks at Documented (2014), a documentary film, written and directed by Jose Antonio Vargas, a Pulitzer-winning journalist-turned-activist and a self-proclaimed undocumented immigrant; and DefineAmerican.com, an online media platform that articulates the convergence of multiple voices and discourses about post-industrial and post-semiotic citizenship. As sites of meaning production, the two media texts perform counter-narratives that inspire new forms of mediated social activism and postcolonial identities. The paper argues that a closer introspection of the media texts reveals emotional, thematic and ideological claims to an interrogation of a diasporic discourse on redefining the rules of inclusion and exclusion within the postmodern dialogic of citizenship.Keywords: counter-narratives, documentary filmmaking, postmodern citizenship, diaspora media
Procedia PDF Downloads 322801 Modified Bat Algorithm for Economic Load Dispatch Problem
Authors: Daljinder Singh, J.S.Dhillon, Balraj Singh
Abstract:
According to no free lunch theorem, a single search technique cannot perform best in all conditions. Optimization method can be attractive choice to solve optimization problem that may have exclusive advantages like robust and reliable performance, global search capability, little information requirement, ease of implementation, parallelism, no requirement of differentiable and continuous objective function. In order to synergize between exploration and exploitation and to further enhance the performance of Bat algorithm, the paper proposed a modified bat algorithm that adds additional search procedure based on bat’s previous experience. The proposed algorithm is used for solving the economic load dispatch (ELD) problem. The practical constraint such valve-point loading along with power balance constraints and generator limit are undertaken. To take care of power demand constraint variable elimination method is exploited. The proposed algorithm is tested on various ELD problems. The results obtained show that the proposed algorithm is capable of performing better in majority of ELD problems considered and is at par with existing algorithms for some of problems.Keywords: bat algorithm, economic load dispatch, penalty method, variable elimination method
Procedia PDF Downloads 461800 A Greedy Alignment Algorithm Supporting Medication Reconciliation
Authors: David Tresner-Kirsch
Abstract:
Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm
Procedia PDF Downloads 286799 Effect of Silicon in Mitigating Cadmium Toxicity in Maize
Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq
Abstract:
Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.Keywords: antioxidant, cadmium, maize, silicon
Procedia PDF Downloads 520798 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 401797 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy
Authors: Babak Eslami
Abstract:
Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.Keywords: multifrequency, sensitivity, soft matter, polymer
Procedia PDF Downloads 134796 Static Balance in the Elderly: Comparison Between Elderly Performing Physical Activity and Fine Motor Coordination Activity
Authors: Andreia Guimaraes Farnese, Mateus Fernandes Reu Urban, Leandro Procopio, Renato Zangaro, Regiane Albertini
Abstract:
Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and activity practitioner group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.Keywords: balance, barapodometer, coordination, elderly
Procedia PDF Downloads 171795 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home
Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo
Abstract:
Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.Keywords: training, rehabilitation, SCI patient, welfare, robot
Procedia PDF Downloads 428794 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 175793 An Efficient Encryption Scheme Using DWT and Arnold Transforms
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption
Procedia PDF Downloads 486792 Audience Members' Perspective-Taking Predicts Accurate Identification of Musically Expressed Emotion in a Live Improvised Jazz Performance
Authors: Omer Leshem, Michael F. Schober
Abstract:
This paper introduces a new method for assessing how audience members and performers feel and think during live concerts, and how audience members' recognized and felt emotions are related. Two hypotheses were tested in a live concert setting: (1) that audience members’ cognitive perspective taking ability predicts their accuracy in identifying an emotion that a jazz improviser intended to express during a performance, and (2) that audience members' affective empathy predicts their likelihood of feeling the same emotions as the performer. The aim was to stage a concert with audience members who regularly attend live jazz performances, and to measure their cognitive and affective reactions during the performance as non-intrusively as possible. Pianist and Grammy nominee Andy Milne agreed, without knowing details of the method or hypotheses, to perform a full-length solo improvised concert that would include an ‘unusual’ piece. Jazz fans were recruited through typical advertising for New York City jazz performances. The event was held at the New School’s Glass Box Theater, the home of leading NYC jazz venue ‘The Stone.’ Audience members were charged typical NYC jazz club admission prices; advertisements informed them that anyone who chose to participate in the study would be reimbursed their ticket price after the concert. The concert, held in April 2018, had 30 attendees, 23 of whom participated in the study. Twenty-two minutes into the concert, the performer was handed a paper note with the instruction: ‘Perform a 3-5-minute improvised piece with the intention of conveying sadness.’ (Sadness was chosen based on previous music cognition lab studies, where solo listeners were less likely to select sadness as the musically-expressed emotion accurately from a list of basic emotions, and more likely to misinterpret sadness as tenderness). Then, audience members and the performer were invited to respond to a questionnaire from a first envelope under their seat. Participants used their own words to describe the emotion the performer had intended to express, and then to select the intended emotion from a list. They also reported the emotions they had felt while listening using Izard’s differential emotions scale. The concert then continued as usual. At the end, participants answered demographic questions and Davis’ interpersonal reactivity index (IRI), a 28-item scale designed to assess both cognitive and affective empathy. Hypothesis 1 was supported: audience members with greater cognitive empathy were more likely to accurately identify sadness as the expressed emotion. Moreover, audience members who accurately selected ‘sadness’ reported feeling marginally sadder than people who did not select sadness. Hypotheses 2 was not supported; audience members with greater affective empathy were not more likely to feel the same emotions as the performer. If anything, members with lower cognitive perspective-taking ability had marginally greater emotional overlap with the performer, which makes sense given that these participants were less likely to identify the music as sad, which corresponded with the performer’s actual feelings. Results replicate findings from solo lab studies in a concert setting and demonstrate the viability of exploring empathy and collective cognition in improvised live performance.Keywords: audience, cognition, collective cognition, emotion, empathy, expressed emotion, felt emotion, improvisation, live performance, recognized emotion
Procedia PDF Downloads 133791 Importance of New Policies of Process Management for Internet of Things Based on Forensic Investigation
Authors: Venkata Venugopal Rao Gudlur
Abstract:
The Proposed Policies referred to as “SOP”, on the Internet of Things (IoT) based Forensic Investigation into Process Management is the latest revolution to save time and quick solution for investigators. The forensic investigation process has been developed over many years from time to time it has been given the required information with no policies in investigation processes. This research reveals that the current IoT based forensic investigation into Process Management based is more connected to devices which is the latest revolution and policies. All future development in real-time information on gathering monitoring is evolved with smart sensor-based technologies connected directly to IoT. This paper present conceptual framework on process management. The smart devices are leading the way in terms of automated forensic models and frameworks established by different scholars. These models and frameworks were mostly focused on offering a roadmap for performing forensic operations with no policies in place. These initiatives would bring a tremendous benefit to process management and IoT forensic investigators proposing policies. The forensic investigation process may enhance more security and reduced data losses and vulnerabilities.Keywords: Internet of Things, Process Management, Forensic Investigation, M2M Framework
Procedia PDF Downloads 103790 Detection of Biomechanical Stress for the Prevention of Disability Derived from Musculoskeletal Disorders
Authors: Leydi Noemi Peraza Gómez, Jose Álvarez Nemegyei, Damaris Francis Estrella Castillo
Abstract:
In order to have an epidemiological tool to detect biomechanical stress (ERGO-Mex), which impose physical labor or recreational activities, a questionnaire is constructed in Spanish, validated and culturally adapted to the Mayan indigenous population of Yucatan. Through the seven steps proposed by Guillemin and Beaton the procedure was: initial translation, synthesis of the translations, feed back of the translation. After that review by a committee of experts, pre-test of the preliminary version, and presentation of the results to the committee of experts and members of the community. Finally the evaluation of its internal validity (Cronbach's α coefficient) and external (intraclass correlation coefficient). The results for the validation in Spanish indicated that 45% of the participants have biomechanical stress. The ERGO-Mex correlation was 0.69 (p <0.0001). Subjects with high biomechanical stress had a higher score than subjects with low biomechanical stress (17.4 ± 8.9 vs.9.8 ± 2.8, p = 0.003). The Cronbach's α coefficient was 0.92; and for validation in Cronbach's α maya it was 0.82 and CCI = 0.70 (95% CI: 0.58-0.79; p˂0.0001); ERGO-Mex is suitable for performing early detection of musculoskeletal diseases and helping to prevent disability.Keywords: biomechanical stress, disability, musculoskeletal disorders, prevention
Procedia PDF Downloads 182789 Multiloop Fractional Order PID Controller Tuned Using Cuckoo Algorithm for Two Interacting Conical Tank Process
Authors: U. Sabura Banu, S. K. Lakshmanaprabu
Abstract:
The improvement of meta-heuristic algorithm encourages control engineer to design an optimal controller for industrial process. Most real-world industrial processes are non-linear multivariable process with high interaction. Even in sub-process unit, thousands of loops are available mostly interacting in nature. Optimal controller design for such process are still challenging task. Closed loop controller design by multiloop PID involves a tedious procedure by performing interaction study and then PID auto-tuning the loop with higher interaction. Finally, detuning the controller to accommodate the effects of the other process variables. Fractional order PID controllers are replacing integer order PID controllers recently. Design of Multiloop Fractional Order (MFO) PID controller is still more complicated. Cuckoo algorithm, a swarm intelligence technique is used to optimally tune the MFO PID controller with easiness minimizing Integral Time Absolute Error. The closed loop performance is tested under servo, regulatory and servo-regulatory conditions.Keywords: Cuckoo algorithm, mutliloop fractional order PID controller, two Interacting conical tank process
Procedia PDF Downloads 500788 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 104787 Competencies and Training Needs for School Sport Managers in the North West Province, South Africa
Authors: Elriena Eksteen, Yolandi Willemse, Dawie D. J. Malan, Suria Ellis
Abstract:
It is important to understand which competencies are needed for managerial and administrative effectiveness of school sport managers with regard to the design, delivery and direction of school sport programmes. The purpose of this study was to determine the competencies and training needs for secondary school sport managers in the North West Province. Data were gathered from 79 school sport managers in the North West Province by means of a validated self-compiled questionnaire. Descriptive statistics, factor analysis and a dependent t-test were used to compare which competencies school sport managers perceive as important in their work with the competencies they actually perform. Functional competencies and core competencies were both found to be important for managing school sport effectively. There were statistically significant differences between the perceived importance of competencies and the frequency with which competencies were actually performed. Respondents attached greater importance to functional and core competencies than the proportion of time spent actually performing them. Furthermore, results indicated the need to train teachers in managing sport finance, sport facilities and human resources, as well as presenting workshops in public relations, sport marketing and sport organisation.Keywords: competencies, functional competencies, core competencies, school sport manager, training needs
Procedia PDF Downloads 428786 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 323785 Flame Spread along Fuel Cylinders in High Pressures
Authors: Yanli Zhao, Jian Chen, Shouxiang Lu
Abstract:
Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.Keywords: cylinder fuel, flame spread, heat transfer, high pressure
Procedia PDF Downloads 378784 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 390