Search results for: medi-cal data
26784 Neuro-Connectivity Analysis Using Abide Data in Autism Study
Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha
Abstract:
Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model
Procedia PDF Downloads 28826783 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK
Authors: Sneha Shankar, Orlando Buendia, Will Evans
Abstract:
Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis
Procedia PDF Downloads 16626782 Willingness and Attitude towards Organ Donation of Nurses in Taiwan
Authors: ShuYing Chung, Minchuan Huang, Iping Chen
Abstract:
Taking the medical staff in an emergency ward of a medical center in Central Taiwan as the research object, the questionnaire data were collected by anonymous and voluntary reporting methods with structured questionnaire to explore the actual situation, willingness and attitude of organ donation. Only 80 valid questionnaires were collected. Among the 8 questions, the average correct rate was 5.9 + 1.2, and the correct rate was 73.13%. The willingness of organ donation that 7.5% of the people are not willing; 92.5% of the people are willing, of which 62.5% have considered but have not yet decided; 21.3% are willing but have not signed the consent of organ donation; They have signed the consent of organ donation 8.7%. The average total score (standard deviation) of attitude towards organ donation was 36.2. There is no significant difference between the demographic variables and the awareness and willingness of organ donation, but there is a significant correlation between the marital status and the attitude of organ donation.Keywords: clinical psychology, organ donation, doctors affecting psychological disorders, commitment
Procedia PDF Downloads 13626781 Reducing System Delay to Definitive Care For STEMI Patients, a Simulation of Two Different Strategies in the Brugge Area, Belgium
Authors: E. Steen, B. Dewulf, N. Müller, C. Vandycke, Y. Vandekerckhove
Abstract:
Introduction: The care for a ST-elevation myocardial infarction (STEMI) patient is time-critical. Reperfusion therapy within 90 minutes of initial medical contact is mandatory in the improvement of the outcome. Primary percutaneous coronary intervention (PCI) without previous fibrinolytic treatment, is the preferred reperfusion strategy in patients with STEMI, provided it can be performed within guideline-mandated times. Aim of the study: During a one year period (January 2013 to December 2013) the files of all consecutive STEMI patients with urgent referral from non-PCI facilities for primary PCI were reviewed. Special attention was given to a subgroup of patients with prior out-of-hospital medical contact generated by the 112-system. In an effort to reduce out-of-hospital system delay to definitive care a change in pre-hospital 112 dispatch strategies is proposed for these time-critical patients. Actual time recordings were compared with travel time simulations for two suggested scenarios. A first scenario (SC1) involves the decision by the on scene ground EMS (GEMS) team to transport the out-of-hospital diagnosed STEMI patient straight forward to a PCI centre bypassing the nearest non-PCI hospital. Another strategy (SC2) explored the potential role of helicopter EMS (HEMS) where the on scene GEMS team requests a PCI-centre based HEMS team for immediate medical transfer to the PCI centre. Methods and Results: 49 (29,1% of all) STEMI patients were referred to our hospital for emergency PCI by a non-PCI facility. 1 file was excluded because of insufficient data collection. Within this analysed group of 48 secondary referrals 21 patients had an out-of-hospital medical contact generated by the 112-system. The other 27 patients presented at the referring emergency department without prior contact with the 112-system. The table below shows the actual time data from first medical contact to definitive care as well as the simulated possible gain of time for both suggested strategies. The PCI-team was always alarmed upon departure from the referring centre excluding further in-hospital delay. Time simulation tools were similar to those used by the 112-dispatch centre. Conclusion: Our data analysis confirms prolonged reperfusion times in case of secondary emergency referrals for STEMI patients even with the use of HEMS. In our setting there was no statistical difference in gain of time between the two suggested strategies, both reducing the secondary referral generated delay with about one hour and by this offering all patients PCI within the guidelines mandated time. However, immediate HEMS activation by the on scene ground EMS team for transport purposes is preferred. This ensures a faster availability of the local GEMS-team for its community. In case these options are not available and the guideline-mandated times for primary PCI are expected to be exceeded, primary fibrinolysis should be considered in a non-PCI centre.Keywords: STEMI, system delay, HEMS, emergency medicine
Procedia PDF Downloads 31826780 Antibiotic Prescribing in the Acute Care in Iraq
Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas
Abstract:
Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.Keywords: Acute care, Antibiotic misuse, Iraq, Prescribing
Procedia PDF Downloads 12226779 Ethnobotanical Survey of Medicinal Plants from Bechar Region, South-West of Algeria
Authors: Naima Fatehi
Abstract:
The paper reports on 107 medicinal plants, traditionally used in the South-West of Algeria (Bechar region). The information has been documented by interviewing traditional herbalists, various elderly men and women following different ethnobotanical methods. Ethnobotanical data was arranged alphabetically by botanical name, followed by family name, vernacular name, and part used. The present paper represents significant ethnobotanical information on medical plants used extensively in Bechar region for treating various diseases and provides baseline data for future pharmacological and phytochemical studies.Keywords: medicinal plants, ethnobotanical survey, South-West Algeria, Bechar region
Procedia PDF Downloads 51926778 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 45826777 A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors
Authors: Ghadeer Mohammad Said El-Sheikh, Samer Mohamad Shalhoob
Abstract:
Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria.Keywords: technical, environmental, healthcare, characteristic of medical equipment
Procedia PDF Downloads 15426776 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 49826775 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 9526774 Magnitude of Visual Impairment and Associated Factors among Adult Glaucoma Patients Attending University of Gondar, Comprehensive Specialized Hospital, Tertiary Eye Care and Training Center, Northwest Ethiopia, 2022
Authors: Getenet Shumet Birhan, Biruk Lelisa Eticha, Gizachew Tilahun Belete, Fisseha Admassu Ayele
Abstract:
Context: Glaucoma is a significant public health concern globally, being the second leading cause of blindness. This study focuses on adult glaucoma patients in Ethiopia, specifically at the University of Gondar. Research Aim: The main objective is to assess the prevalence of visual impairment and identify associated factors among adult glaucoma patients at the University of Gondar. Methodology: The study used an institution-based cross-sectional design, collecting data from 423 glaucoma patients through interviews and medical chart reviews. Descriptive statistics and logistic regression were employed for analysis. Findings: The study found a high prevalence of visual impairment (77.6%) among adult glaucoma patients, with factors such as female sex, rural residence, glaucoma type, disease stage, and duration of diagnosis significantly associated with visual impairment. Theoretical Importance: This research adds valuable insights into the prevalence and determinants of visual impairment among glaucoma patients in Ethiopia, contributing to the existing literature on eye health in low-resource settings. Data Collection: Data were collected through face-to-face interviews and medical chart reviews at the University of Gondar, utilizing a structured questionnaire. Analysis Procedures: Descriptive statistics, frequency analysis, and binary logistic regression were employed to analyze the data and identify factors associated with visual impairment in adult glaucoma patients. Question Addressed: The study sought to answer the question of the prevalence of visual impairment and its associated factors among adult glaucoma patients at the University of Gondar in Northwest Ethiopia. Conclusion: The research concludes that visual impairment is significantly high among adult glaucoma patients in this setting, with several factors playing a role in its occurrence.Keywords: visual impairment, glaucoma, Ethiopia, Gondar
Procedia PDF Downloads 7226773 Impact of Emergency Medicine Department Crowding on Mortality
Authors: Morteza Gharibi, Abdolghader Pakniat, Somayeh Bahrampouri
Abstract:
Introduction: Emergency department (E.R.) crowding is a serious widespread problem in hospitals that leads to irregularities, a slower rate of delivery of services to patients, and a long-term stay. In addition, the long-term stay in the E.D. reduces the possibility of providing services with appropriate quality to other patients who are undergoing medical emergencies, which leads to dissatisfaction among patients. This study aimed to determine the relationship between ED-crowding and the mortality rate of the patients referred to the E.D. In a retrospective cohort study, all patients who expired in first 24 hours of admission were enrolled in the study. Crowding index at the moment of admission was calculated using Edwin Score. The data including history and physical examination, time of arrival in the E.D., diagnosis (using ICD 10 code), time of death, cause of death, demographic information was recoded based on triage forms on admission and patients’ medical files. Data analysis was performed by using descriptive statistics and chi square test, ANOVA tests using SPSS ver. 19. The time of arrival in E.D. to death in crowded E.D. conditions, with an average of five hours and 25 minutes, was significantly higher than the average admission Time of arrival in E.D. to death in active and crowded E.D. conditions. More physicians and nurses can be employed during crowded times to reduce staff fatigue and improve their performance during these hours.Keywords: mortality, emergency, department, crowding
Procedia PDF Downloads 9326772 Determinants of Quality of Life and Mental Health in Medical Students During Two Years Observation
Authors: Szymon Szemik, Małgorzata Kowalska
Abstract:
Objective: Medical students experience numerous demands during the education process, determining their quality of life (QoL) and health status. POLLEK (POLski LEKarz, eng. Polish Physician) study aims to identify and evaluate the quality of life, mental health status, and ever-recognized chronic diseases by simultaneously assessing their determinants in Polish medical students during long-term observation. Material and Methods: The POLLEK is the follow-up cohort study conducted among medical students at the Medical University of Silesia in Katowice. Students were followed during two observation periods: in their first year of studies, the academic year 2021/2022 (T1), and in their second year, the academic year 2022/2023 (T2). Results: The total number of participants in the first year of observation (T1) was 427 while in the second year (T2) was 335. Obtained results confirmed that the QoL score significantly decreased in their second year of studies mainly in the somatic and psychological domains. Moreover, we observed a significant increase in self-declared scoring of somatic symptoms year by year (from M=4.75 at T1 to M=8.06 at T2, p<0.001) in the GHQ-28 questionnaire survey. The determinants of QoL domains common to T1 and T2 remained self-declared health status, frequency of physical activity, and current financial situation. In the first year of evaluation, 56 students (13.10%) were overweight or obese, and 52 (15.8%) in the second. Regardless of the academic year, the increased risk of being overweight or obese was significantly associated with dissatisfaction with personal health, financial deficiencies, and a diet abundant in meat consumption. Conclusions: The QoL in medical students and selected determinants of their health status deteriorated during the observation period. Our findings suggest that medical schools should actively promote the activity needed to achieve a balance between schoolwork and the personal life of medical students from the beginning of university study.Keywords: quality of life, mental health, medical students, follow-up study
Procedia PDF Downloads 4026771 Challenges Faced by Physician Leaders in Teaching Hospitals of Private Medical Schools in the National Capital Region, Philippines
Authors: Policarpio Jr. Joves
Abstract:
Physicians in most teaching hospitals are commonly promoted into managerial roles, yet their training is mostly in clinical and scientific skills but not in leadership competencies. When they shift into roles of physician leadership, the majority hold on to their primary identity of physicians. These conflicting roles affect their identity and eventually their work. The physician leaders also face additional challenges related to academics which include incorporation of new knowledge into the existing curriculum, use of technology in the delivery of teaching, the need to train medical students outside of hospital wards, etc. The study aims to explore how physician leaders in teaching hospitals of private medical schools enact their leadership roles and how they face the challenges as physician leaders. The study setting shall be teaching hospitals of three private medical schools situated in the National Capital Region, Philippines. A multiple case study design shall be adopted in this research. Physicians shall be eligible to participate in the study if they are practicing clinicians limited to the five major clinical specialty: Internal Medicine, Pediatrics, Family Medicine, Surgery, Obstetrics and Gynecology. They must be teaching in the College of Medicine prior to their appointments as physician leaders in both medical school and teaching hospital. Semi-structured face-to-face interviews shall be utilized as a means of data collection, with open-ended questions, enabling physician leaders to present narratives about their identity, role enactment, conflicts, reaction of colleagues, and the challenges encountered in their day-to-day work as physician leaders. Interviews shall be combined with observations and review of records to gain more insights into how the physician leaders are 'doing' management. Within-case analysis shall be done initially followed by a thematic analysis across the cases, referred to as cross–case analysis or cross-case synthesis.Keywords: academic leaders, academic managers, physician leaders, physician managers
Procedia PDF Downloads 34426770 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques
Authors: Tosin Ige
Abstract:
Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique
Procedia PDF Downloads 16926769 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.Keywords: big data, big data analytics, Hadoop, cloud
Procedia PDF Downloads 30826768 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 41626767 The Developing of Knowledge-Based System for the Medical Treatment with Herbs
Authors: Rujijan Vichivanives
Abstract:
This research aims to create a knowledge-based system as a database for self-healthcare analysis, diagnosis of simple illnesses, and the use of Thai herbs instead of modern medicine by using principles of Thai traditional medication theory. These were disseminated by website network programs within Suan Sunandha Rajabhat University. The population used in this study was divided into two groups: the first group consisted of four experts of Thai traditional medication and the second group was 300 website users. The methods used for collecting data were paper questionnaires and poll questionnaires on the website. The statistics used for analyzing data was at an average level. The results were divided into three parts: the first part was the development of a knowledge-based system and the second part was applied programs on website. Both parts could be fulfilled and achieved according to the set goal. The third part was the evaluation of the study: The evaluation of the viewpoints of the experts towards website designs were evaluated at a good level of 4.20. The satisfaction evaluation of the users was found at a good level of average satisfactory level at 4.24. It was found that the young population of those under the age of 16 had less cares about their health than the population of other teenagers, working age adults and those of older age. The research findings should be extended in order to encourage the lifestyle modifications to people of all ages by using the self-healthcare principles.Keywords: developing, herbs, knowledge-based system, medical treatment
Procedia PDF Downloads 33026766 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges
Authors: Dalvin D. Hill, Hector M. Castro Garcia
Abstract:
A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).Keywords: electronic health record, health information exchanges, internet of things, personal health records, wearable devices, wearables
Procedia PDF Downloads 12826765 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 13226764 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 5626763 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias
Procedia PDF Downloads 8326762 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging
Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati
Abstract:
Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization
Procedia PDF Downloads 7426761 Journals' Productivity in the Literature on Malaria in Africa
Authors: Yahya Ibrahim Harande
Abstract:
The purpose of this study was to identify the journals that published articles on malaria disease in Africa and to determine the core of productive journals from the identified journals. The data for the study were culled out from African Index Medicus (AIM) database. A total of 529 articles was gathered from 115 journal titles from 1979-2011. In order to obtain the core of productive journals, Bradford`s law was applied to the collected data. Five journal titles were identified and determined as core journals. The data used for the study was analyzed and that, the subject matter used, Malaria was in conformity with the Bradford`s law. On the aspect dispersion of the literature, English was found to be the dominant language of the journals. (80.9%) followed by French (16.5%). Followed by Portuguese (1.7%) and German (0.9%). Recommendation is hereby proposed for the medical libraries to acquire these five journals that constitute the core in malaria literature for the use of their clients. It could also help in streamlining their acquision and selection exercises. More researches in the subject area using Bibliometrics approaches are hereby recommended.Keywords: productive journals, malaria disease literature, Bradford`s law, core journals, African scholars
Procedia PDF Downloads 34326760 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 47626759 Evaluation of the Sterilization Practice in Liberal Dental Surgeons at Sidi Bel Abbes- Algeria
Authors: A. Chenafa, S. Boulenouar, M. Zitouni, M. Boukouria
Abstract:
The sterilization of medical devices constitutes for all the medical professions, an inescapable obligation. It has for objective to prevent the infectious risk, both for the patient and for the medical team. The Dental surgeon as every healthcare professional has to master perfectly this subject and to train his staff to the various techniques of sterilization. It is the only way to assure the patients all the security for which they are entitled to wait when they undergo a dental care. It’s for it, that we undertook to lead an investigation aiming at estimating the sterilization practice at the dental surgeon of Sidi bel Abbes. The survey result showed a youth marked with the profession with a majority use of autoclave with cycle B and an almost total absence of the sterilization controls (test of Bowie and Dick). However, the majority of the dentists control and validate their sterilizers. Finally, our survey allowed us to describe some practices which must be improved regarding control, regarding qualification and regarding staff training. And suggestions were made in this sense.Keywords: dental surgeon, medical devices, sterilization, survey
Procedia PDF Downloads 39826758 Clinical Training Simulation Experience of Medical Sector Students
Authors: Tahsien Mohamed Okasha
Abstract:
Simulation is one of the emerging educational strategies that depend on the creation of scenarios to imitate what could happen in real life. At the time of COVID, we faced big obstacles in medical education, specially the clinical part and how we could apply it, the simulation was the golden key. Simulation is a very important tool of education for medical sector students, through creating a safe, changeable, quiet environment with less anxiety level for students to practice and to have repeated trials on their competencies. That impacts the level of practice, achievement, and the way of acting in real situations and experiences. A blind Random sample of students from different specialties and colleges who came and finished their training in an integrated environment was collected and tested, and the responses were graded from (1-5). The results revealed that 77% of the studied subjects agreed that dealing and interacting with different medical sector candidates in the same place was beneficial. 77% of the studied subjects agreed that simulations were challenging in thinking and decision-making skills .75% agreed that using high-fidelity manikins was helpful. 75% agree .76% agreed that working in a safe, prepared environment is helpful for realistic situations.Keywords: simulation, clinical training, education, medical sector students
Procedia PDF Downloads 2826757 The Economic Limitations of Defining Data Ownership Rights
Authors: Kacper Tomasz Kröber-Mulawa
Abstract:
This paper will address the topic of data ownership from an economic perspective, and examples of economic limitations of data property rights will be provided, which have been identified using methods and approaches of economic analysis of law. To properly build a background for the economic focus, in the beginning a short perspective of data and data ownership in the EU’s legal system will be provided. It will include a short introduction to its political and social importance and highlight relevant viewpoints. This will stress the importance of a Single Market for data but also far-reaching regulations of data governance and privacy (including the distinction of personal and non-personal data, data held by public bodies and private businesses). The main discussion of this paper will build upon the briefly referred to legal basis as well as methods and approaches of economic analysis of law.Keywords: antitrust, data, data ownership, digital economy, property rights
Procedia PDF Downloads 8026756 Protecting the Cloud Computing Data Through the Data Backups
Authors: Abdullah Alsaeed
Abstract:
Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.
Procedia PDF Downloads 8626755 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 508