Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6125

Search results for: measurement accuracy

5765 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 116
5764 Nutrition Strategy Using Traditional Tibetan Medicine in the Preventive Measurement

Authors: Ngawang Tsering

Abstract:

Traditional Tibetan medicine is primarily focused on promoting health and keeping away diseases from its unique in prescribing specific diet and lifestyle. The prevalence of chronic diseases has been rising day by day and kills a number of people due to the lack of proper nutritional design in modern times. According to traditional Tibetan medicine, chronic diseases such as diabetes, cancer, cardiovascular diseases, respiratory diseases, and arthritis are heavily associated with an unwholesome diet and inappropriate lifestyles. Diet and lifestyles are the two main conditions of diseases and healthy life. The prevalence of chronic diseases is one of the challenges, with massive economic impact and expensive health issues. Though chronic diseases are challenges, it has a solution in the preventive measurements by using proper nutrition design based on traditional Tibetan medicine. Until today, it is hard to evaluate whether traditional Tibetan medicine nutrition strategy could play a major role in preventive measurement as of the lack of current research evidence. However, compared with modern nutrition, it has an exclusive valuable concept, such as a holistic way and diet or nutrition recommendation based on different aspects. Traditional Tibetan medicine is one of the oldest ancient existing medical systems known as Sowa Rigpa (Science of Healing) highlights different aspects of dietetics and nutrition, namely geographical, seasonal, age, personality, emotional, food combination, the process of individual metabolism, potency, and amount of food. This article offers a critical perspective on the preventive measurement against chronic diseases through nutrition design using traditional Tibetan medicine and also needs attention for a deeper understanding of traditional Tibetan medicine in the modern world.

Keywords: traditional Tibetan medicine, nutrition, chronic diseases, preventive measurement, holistic approach, integrative

Procedia PDF Downloads 158
5763 Male Rivalry Seen through a Biopsychosocial Lens

Authors: John G. Vongas, Raghid Al Hajj

Abstract:

We investigated the effects of winning and losing on men’s testosterone and assessed whether androgen reactivity affected their empathic accuracy and their aggression. We also explored whether their power motivation would moderate the relationships between competitive, hormonal, and behavioral outcomes. In Experiment 1, 84 males competed on a task that allegedly gauged their leadership potential and future earnings, after which they interpreted people’s emotional expressions. Results showed that winners were more capable of accurately inferring others’ emotions compared to losers and this ability improved with increasing power. Second, testosterone change mediated the relationship between competitive outcomes and empathic accuracy, with post-competitive testosterone increases relating to more accuracy. In Experiment 2, 72 males again competed after which they were measured on two aggression subtypes: proactive and reactive. Results showed that neither the competitive outcome nor the testosterone change had a significant effect on either types of aggression. However, as power increased, winners aggressed more proactively than losers whereas losers aggressed more reactively than winners. Finally, in both experiments, power moderated the relationship between competitive outcomes and testosterone change. Collectively, these studies add to existing research that explores the psychophysiological effects of competition on individuals’ empathic and aggressive responses.

Keywords: competition, testosterone, power motivation, empathic accuracy, proactive aggression, reactive aggression

Procedia PDF Downloads 310
5762 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 167
5761 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: automatic speech recognition, asr, air traffic control, atc

Procedia PDF Downloads 400
5760 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 369
5759 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 239
5758 Evaluating Accuracy of Foetal Weight Estimation by Clinicians in Christian Medical College Hospital, India and Its Correlation to Actual Birth Weight: A Clinical Audit

Authors: Aarati Susan Mathew, Radhika Narendra Patel, Jiji Mathew

Abstract:

A retrospective study conducted at Christian Medical College (CMC) Teaching Hospital, Vellore, India on 14th August 2014 to assess the accuracy of clinically estimated foetal weight upon labour admission. Estimating foetal weight is a crucial factor in assessing maternal and foetal complications during and after labour. Medical notes of ninety-eight postnatal women who fulfilled the inclusion criteria were studied to evaluate the correlation between their recorded Estimated Foetal Weight (EFW) on admission and actual birth weight (ABW) of the newborn after delivery. Data concerning maternal and foetal demographics was also noted. Accuracy was determined by absolute percentage error and proportion of estimates within 10% of ABW. Actual birth weights ranged from 950-4080g. A strong positive correlation between EFW and ABW (r=0.904) was noted. Term deliveries (≥40 weeks) in the normal weight range (2500-4000g) had a 59.5% estimation accuracy (n=74) compared to pre-term (<40 weeks) with an estimation accuracy of 0% (n=2). Out of the term deliveries, macrosomic babies (>4000g) were underestimated by 25% (n=3) and low birthweight (LBW) babies were overestimated by 12.7% (n=9). Registrars who estimated foetal weight were accurate in babies within normal weight ranges. However, there needs to be an improvement in predicting weight of macrosomic and LBW foetuses. We have suggested the use of an amended version of the Johnson’s formula for the Indian population for improvement and a need to re-audit once implemented.

Keywords: clinical palpation, estimated foetal weight, pregnancy, India, Johnson’s formula

Procedia PDF Downloads 364
5757 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 389
5756 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 159
5755 Examining the Development of Complexity, Accuracy and Fluency in L2 Learners' Writing after L2 Instruction

Authors: Khaled Barkaoui

Abstract:

Research on second-language (L2) learning tends to focus on comparing students with different levels of proficiency at one point in time. However, to understand L2 development, we need more longitudinal research. In this study, we adopt a longitudinal approach to examine changes in three indicators of L2 ability, complexity, accuracy, and fluency (CAF), as reflected in the writing of L2 learners when writing on different tasks before and after a period L2 instruction. Each of 85 Chinese learners of English at three levels of English language proficiency responded to two writing tasks (independent and integrated) before and after nine months of English-language study in China. Each essay (N= 276) was analyzed in terms of numerous CAF indices using both computer coding and human rating: number of words written, number of errors per 100 words, ratings of error severity, global syntactic complexity (MLS), complexity by coordination (T/S), complexity by subordination (C/T), clausal complexity (MLC), phrasal complexity (NP density), syntactic variety, lexical density, lexical variation, lexical sophistication, and lexical bundles. Results were then compared statistically across tasks, L2 proficiency levels, and time. Overall, task type had significant effects on fluency and some syntactic complexity indices (complexity by coordination, structural variety, clausal complexity, phrase complexity) and lexical density, sophistication, and bundles, but not accuracy. L2 proficiency had significant effects on fluency, accuracy, and lexical variation, but not syntactic complexity. Finally, fluency, frequency of errors, but not accuracy ratings, syntactic complexity indices (clausal complexity, global complexity, complexity by subordination, phrase complexity, structural variety) and lexical complexity (lexical density, variation, and sophistication) exhibited significant changes after instruction, particularly for the independent task. We discuss the findings and their implications for assessment, instruction, and research on CAF in the context of L2 writing.

Keywords: second language writing, Fluency, accuracy, complexity, longitudinal

Procedia PDF Downloads 153
5754 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: dissolved oxygen, water quality, predication DO, support vector machine

Procedia PDF Downloads 290
5753 Image Reconstruction Method Based on L0 Norm

Authors: Jianhong Xiang, Hao Xiang, Linyu Wang

Abstract:

Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.

Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction

Procedia PDF Downloads 118
5752 Breath Ethanol Imaging System Using Real Time Biochemical Luminescence for Evaluation of Alcohol Metabolic Capacity

Authors: Xin Wang, Munkbayar Munkhjargal, Kumiko Miyajima, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

The measurement of gaseous ethanol plays an important role of evaluation of alcohol metabolic capacity in clinical and forensic analysis. A 2-dimensional visualization system for gaseous ethanol was constructed and tested in visualization of breath and transdermal alcohol. We demonstrated breath ethanol measurement using developed high-sensitive visualization system. The concentration of breath ethanol calculated with the imaging signal was significantly different between the volunteer subjects of ALDH2 (+) and (-).

Keywords: breath ethanol, ethnaol imaging, biochemical luminescence, alcohol metabolism

Procedia PDF Downloads 351
5751 Using a GIS-Based Method for Green Infrastructure Accessibility of Different Socio-Economic Groups in Auckland, New Zealand

Authors: Jing Ma, Xindong An

Abstract:

Green infrastructure, the most important aspect of improving the quality of life, has been a crucial element of the liveability measurement. With demanding of more liveable urban environment from increasing population in city area, access to green infrastructure in walking distance should be taken into consideration. This article exemplifies the study on accessibility measurement of green infrastructure in central Auckland (New Zealand), using network analysis tool on the basis of GIS, to verify the accessibility levels of green infrastructure. It analyses the overall situation of green infrastructure and draws some conclusions on the city’s different levels of accessibility according to the categories and facilities distribution, which provides valuable references and guidance for the future facility improvement in planning strategies.

Keywords: quality of life, green infrastructure, GIS, accessibility

Procedia PDF Downloads 283
5750 The Impact of the Cross Race Effect on Eyewitness Identification

Authors: Leah Wilck

Abstract:

Eyewitness identification is arguably one of the most utilized practices within our legal system; however, exoneration cases indicate that this practice may lead to accuracy and conviction errors. The purpose of this study was to examine the effects of the cross-race effect, the phenomena in which people are able to more easily and accurately identify faces from within their racial category, on the accuracy of eyewitness identification. Participants watched three separate videos of a perpetrator trying to steal a bicycle. In each video, the perpetrator was of a different race and gender. Participants watched a video where the perpetrator was a Black male, a White male, and a White female. Following the completion of watching each video, participants were asked to recall everything they could about the perpetrator they witnessed. The initial results of the study did not find the expected cross-race effect impacted the eyewitness identification accuracy. These surprising results are discussed in terms of cross-race bias and recognition theory as well as applied implications.

Keywords: cross race effect, eyewitness identification, own-race bias, racial profiling

Procedia PDF Downloads 164
5749 Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria

Authors: Augustine Osayande

Abstract:

This research is on Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria. The primary objective was to identify notable gullies sites and quantify the volume of soil loss in the study area. Direct field observation and measurement of gullies dimensions was done with the help of research assistants using a measuring tape, Camera and 3percent accuracy Global Positioning System (GPS). The result revealed that notable gullies in the area have resulted in the loss of lives and properties, destruction of arable lands and wastage of large areas of usable lands. Gullies in Edo North have Mean Volume of Soil Loss of 614, 763.33 m³, followed by Edo South with 79,604.76 m³ and Edo Central is 46,242.98 m³ and as such an average of 1,772, 888.7m3 of soil is lost annually in the study area due to gully erosion problem. The danger of gully erosion in helpless regions like Edo State called for urgent remedies in order to arrest the further loss of soil, buildings and other properties.

Keywords: Edo, magnitude, gully, volume, soil, sloss

Procedia PDF Downloads 143
5748 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
5747 A Study of the Performance Parameter for Recommendation Algorithm Evaluation

Authors: C. Rana, S. K. Jain

Abstract:

The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.

Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems

Procedia PDF Downloads 416
5746 Photovoltaic Cells Characteristics Measurement Systems

Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.

Abstract:

Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.

Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition

Procedia PDF Downloads 462
5745 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric

Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah

Abstract:

Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.

Keywords: image registration, mutual information, image gradients, image transformations

Procedia PDF Downloads 248
5744 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 115
5743 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction

Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez

Abstract:

Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.

Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis

Procedia PDF Downloads 182
5742 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 560
5741 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee

Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan

Abstract:

This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.

Keywords: bio-medical sensors, monitoring, logging, cloud service

Procedia PDF Downloads 522
5740 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses

Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray

Abstract:

Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.

Keywords: calibrator, CNV, gene copy number, VAF

Procedia PDF Downloads 153
5739 Multi-Focus Image Fusion Using SFM and Wavelet Packet

Authors: Somkait Udomhunsakul

Abstract:

In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments.

Keywords: multi-focus image fusion, wavelet packet, spatial frequency measurement

Procedia PDF Downloads 474
5738 In-vitro Metabolic Fingerprinting Using Plasmonic Chips by Laser Desorption/Ionization Mass Spectrometry

Authors: Vadanasundari Vedarethinam, Kun Qian

Abstract:

The metabolic analysis is more distal over proteomics and genomics engaging in clinics and needs rationally distinct techniques, designed materials, and device for clinical diagnosis. Conventional techniques such as spectroscopic techniques, biochemical analyzers, and electrochemical have been used for metabolic diagnosis. Currently, there are four major challenges including (I) long-term process in sample pretreatment; (II) difficulties in direct metabolic analysis of biosamples due to complexity (III) low molecular weight metabolite detection with accuracy and (IV) construction of diagnostic tools by materials and device-based platforms for real case application in biomedical applications. Development of chips with nanomaterial is promising to address these critical issues. Mass spectroscopy (MS) has displayed high sensitivity and accuracy, throughput, reproducibility, and resolution for molecular analysis. Particularly laser desorption/ ionization mass spectrometry (LDI MS) combined with devices affords desirable speed for mass measurement in seconds and high sensitivity with low cost towards large scale uses. We developed a plasmonic chip for clinical metabolic fingerprinting as a hot carrier in LDI MS by series of chips with gold nanoshells on the surface through controlled particle synthesis, dip-coating, and gold sputtering for mass production. We integrated the optimized chip with microarrays for laboratory automation and nanoscaled experiments, which afforded direct high-performance metabolic fingerprinting by LDI MS using 500 nL of serum, urine, cerebrospinal fluids (CSF) and exosomes. Further, we demonstrated on-chip direct in-vitro metabolic diagnosis of early-stage lung cancer patients using serum and exosomes without any pretreatment or purifications. To our best knowledge, this work initiates a bionanotechnology based platform for advanced metabolic analysis toward large-scale diagnostic use.

Keywords: plasmonic chip, metabolic fingerprinting, LDI MS, in-vitro diagnostics

Procedia PDF Downloads 163
5737 Impact of Board Characteristics on Financial Performance: A Study of Manufacturing Sector of Pakistan

Authors: Saad Bin Nasir

Abstract:

The research will examine the role of corporate governance (CG) practices on firm’s financial performance. Population of this research will be manufacture sector of Pakistan. For the purposes of measurement of impact of corporate governance practices such as board size, board independence, ceo/chairman duality, will take as independent variables and for the measurement of firm’s performance return on assets and return on equity will take as dependent variables. Panel data regression model will be used to estimate the impact of CG on firm performance.

Keywords: corporate governance, board size, board independence, leadership

Procedia PDF Downloads 525
5736 Towards a Measurement-Based E-Government Portals Maturity Model

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the e-government portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an e-government maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.

Keywords: best practices, e-government portal, maturity model, quality model

Procedia PDF Downloads 338