Search results for: machine translation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3354

Search results for: machine translation

2994 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching

Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei

Abstract:

Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.

Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness

Procedia PDF Downloads 390
2993 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents

Authors: Chothmal, Basant Agarwal

Abstract:

Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.

Keywords: feature selection methods, machine learning, NB, one-class SVM, sentiment analysis, support vector machine

Procedia PDF Downloads 517
2992 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 219
2991 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 316
2990 A Preliminary Study for Building an Arabic Corpus of Pair Questions-Texts from the Web: Aqa-Webcorp

Authors: Wided Bakari, Patrce Bellot, Mahmoud Neji

Abstract:

With the development of electronic media and the heterogeneity of Arabic data on the Web, the idea of building a clean corpus for certain applications of natural language processing, including machine translation, information retrieval, question answer, become more and more pressing. In this manuscript, we seek to create and develop our own corpus of pair’s questions-texts. This constitution then will provide a better base for our experimentation step. Thus, we try to model this constitution by a method for Arabic insofar as it recovers texts from the web that could prove to be answers to our factual questions. To do this, we had to develop a java script that can extract from a given query a list of html pages. Then clean these pages to the extent of having a database of texts and a corpus of pair’s question-texts. In addition, we give preliminary results of our proposal method. Some investigations for the construction of Arabic corpus are also presented in this document.

Keywords: Arabic, web, corpus, search engine, URL, question, corpus building, script, Google, html, txt

Procedia PDF Downloads 323
2989 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
2988 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 163
2987 Alleviation of Endoplasmic Reticulum Stress in Mosquito Cells to Survive Dengue 2 Virus Infection

Authors: Jiun-Nan Hou, Tien-Huang Chen, Wei-June Chen

Abstract:

Dengue viruses (DENVs) are naturally transmitted between humans by mosquito vectors. Mosquito cells usually survive DENV infection, allowing infected mosquitoes to retain an active status for virus transmission. In this study, we found that DENV2 virus infection in mosquito cells causes the unfolded protein response (UPR) that activates the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signal pathway, leading to shutdown of global protein translation in infected cells which was apparently regulated by the PERK signal pathway. According to observation in this study, the PERK signal pathway in DENV2-infected C6/36 cells alleviates ER stress, and reduces initiator and effector caspases, as well as the apoptosis rate via shutdown of cellular proteins. In fact, phosphorylation of eukaryotic initiation factor 2ɑ (eIF2ɑ) by the PERK signal pathway may impair recruitment of ribosomes that bind to the mRNA 5’-cap structure, resulting in an inhibitory effect on canonical cap-dependent cellular protein translation. The resultant pro-survival “byproduct” of infected mosquito cells is undoubtedly advantageous for viral replication. This finding provides insights into elucidating the PERK-mediated modulating web that is actively involved in dynamic protein synthesis, cell survival, and viral replication in mosquito cells.

Keywords: cap-dependent protein translation, dengue virus, endoplasmic reticulum stress, mosquito cells, PERK signal pathway

Procedia PDF Downloads 267
2986 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine

Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).

Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine

Procedia PDF Downloads 167
2985 Presenting Internals of Networks Using Bare Machine Technology

Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha

Abstract:

Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.

Keywords: bare machine computing, online research, network technology, visualizing network internals

Procedia PDF Downloads 172
2984 Prediction of Disability-Adjustment Mental Illness Using Machine Learning

Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad

Abstract:

Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population.

Keywords: ML, DAL, YLD, YLL

Procedia PDF Downloads 36
2983 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 69
2982 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms

Authors: Nima Mahmoudi, Hamzeh Khazaei

Abstract:

Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.

Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization

Procedia PDF Downloads 179
2981 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 459
2980 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350
2979 Translation of Post-Soviet Kyrgyz Women’s Poetry

Authors: K. Kalieva, G. Ibraimova

Abstract:

In literature, poetry stands as a profound genre that bridges the life experiences of everyday people, transcending language and culture to unite people through the universal language of emotion and human connection. This paper explores the collaborative efforts of translators in creating the anthology of post-Soviet Kyrgyz women’s poetry, a project spanning over ten years. This compelling anthology brings together the works of fifty prominent female poets from Kyrgyzstan during the post-Soviet era. It includes the original poems in Kyrgyz and provide English translations, sharing the rich and diverse voices of Kyrgyz women with a global audience and fostering a deep appreciation for the beauty of their words. The paper highlights the unique perspectives on life, love, and identity offered by each poet, and emphasizes the role of translation in making these voices accessible worldwide. Each poet's unique voice offers a glimpse into the rich cultural and literary landscape of Kyrgyzstan, highlighting themes that resonate universally. Methodology of the paper employs a combination of qualitative content analysis, semiotic analysis, and quantitative thematic analysis to examine the translation strategies, and the cultural and emotional peculiarities captured in the translations, as well as the themes explored by the poets in their poems. Through the art of translation, the paper explores the lyrical world of Kyrgyz women poets. Although Kyrgyz poets’ names and poems are unfamiliar to many, their words resonate with an emotional depth that is sure to leave a lasting impression. Kyrgyz women's poetry translated into English celebrates the distinctive voices of women in the contemporary world. It serves as a reminder that poetry possesses the power to transcend life's obstacles, foster mutual understanding, and inspire positive change. The poems created by Kyrgyz women are envisioned to serve as a source of inspiration for readers. The paper proposes a poetic journey created by Kyrgyz women, offering readers an opportunity to experience Kyrgyz landscapes, traditions, and universal human themes through their verses. The paper provides an in-depth analysis of the poem translations, exploring the beauty and depth of the poets' thoughts and feelings. Through these translations, readers are invited to explore the world of Kyrgyz women poets, enriching their understanding of the language, culture, and the profound human experiences conveyed in the poetry. The hypotheses of the paper is that analyzing these translations through translation studies theories and linguistic and semiotic frameworks will reveal the complexities and challenges involved in translating poetry across languages and cultures.

Keywords: Kyrgyz poetry, post-soviet literature, translation, women poets.

Procedia PDF Downloads 27
2978 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 14
2977 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 275
2976 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 129
2975 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation

Authors: Kulwinder Singh Mann

Abstract:

The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.

Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images

Procedia PDF Downloads 300
2974 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 321
2973 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents

Authors: Saleh Elawgali

Abstract:

Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.

Keywords: diagnostic, harmonic, induction machine, spectrum

Procedia PDF Downloads 523
2972 Design Approach for the Development of Format-Flexible Packaging Machines

Authors: G. Götz, P. Stich, J. Backhaus, G. Reinhart

Abstract:

The rising demand for format-flexible packaging machines is caused by current market changes. Increasing the formatflexibility is a new goal for the packaging machine manufacturers’ product development process. There are no methodical or designorientated tools for a comprehensive consideration of this target. This paper defines the term format-flexibility in the context of packaging machines and shows the state-of-the-art for improving the changeover of production machines. The requirements for a new approach and the concept itself will be introduced, and the method elements will be explained. Finally, the use of the concept and the result of the development of a format-flexible packaging machine will be shown.

Keywords: packaging machine, format-flexibility, changeover, design method

Procedia PDF Downloads 434
2971 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 61
2970 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 75
2969 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology

Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando

Abstract:

Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.

Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry

Procedia PDF Downloads 151
2968 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 126
2967 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
2966 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
2965 The Posthuman Condition and a Translational Ethics of Entanglement

Authors: Shabnam Naderi

Abstract:

Traditional understandings of ethics considered translators, translations, technologies and other agents as separate and prioritized human agents. In fact, ethics was equated with morality. This disengaged understanding of ethics is superseded by an ethics of relation/entanglement in the posthuman philosophy. According to this ethics of entanglement, human and nonhuman agents are in constant ‘intra-action’. The human is not separate from nature, from technology and from other nonhuman entities, and an ethics of translation in this regard cannot be separated from technology and ecology and get defined merely within the realm of human-human encounter. As such, a posthuman ethics offers opportunities for change and responds to the changing nature of reality, it is negotiable and reveals itself as a moment-by-moment practice (i.e. as temporally emergent and beyond determinacy and permanence). Far from the linguistic or cultural, or individual concerns, posthuman translational ethics discusses how the former rigid norms and laws are challenged in a process ontology which puts emphasis on activity and activation and considers ethics as surfacing in activity, not as a predefined set of rules and values. In this sense, traditional ethical principles like faithfulness, accuracy and representation are superseded by principles of privacy, sustainability, multiplicity and decentralization. The present conceptual study, drawing on Ferrando’s philosophical posthumanism (as a post-humanism, as a post-dualism and as a post-anthropocentrism), Deleuze-Guattarian philosophy of immanence and Barad’s physics-philosophy strives to destabilize traditional understandings of translation ethics and bring an ethics that has loose ends and revolves around multiplicity and decentralization into the picture.

Keywords: ethics of entanglement, post-anthropocentrism, post-dualism, post-humanism, translation

Procedia PDF Downloads 77