Search results for: green friendly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3484

Search results for: green friendly

3124 Steady State Charge Transport in Quantum Dots: Nonequilibrium Green's Function (NEGF) vs. Single Electron Analysis

Authors: Mahesh Koti

Abstract:

In this paper, we present a quantum transport study of a quantum dot in steady state in the presence of static gate potential. We consider a quantum dot coupled to the two metallic leads. The quantum dot under study is modeled through Anderson Impurity Model (AIM) with hopping parameter modulated through voltage drop between leads and the central dot region. Based on the Landauer's formula derived from Nonequilibrium Green's Function and Single Electron Theory, the essential ingredients of transport properties are revealed. We show that the results out of two approaches closely agree with each other. We demonstrate that Landauer current response derived from single electron approach converges with non-zero interaction through gate potential whereas Landauer current response derived from Nonequilibrium Green's Function (NEGF) hits a pole.

Keywords: Anderson impurity model (AIM), nonequilibrium Green's function (NEGF), Landauer's formula, single electron analysis

Procedia PDF Downloads 472
3123 Implementing Smart Climate Change Measures for Effective Management of Primary Schools in Benue State, Nigeria

Authors: Justina Jor, Mahmud Pinga

Abstract:

Climate change has become a significant worldwide environmental challenge with extensive implications, compelling both governments and non-governmental organizations to remain vigilant, as it seemingly impacts various sectors of the global economy, including education. The study investigates the implementation of smart climate change measures for effective primary school management in Benue State, Nigeria. Theorized by the diffusion of innovations, the study was guided by two research questions, and two null hypotheses were formulated and tested. The study used a descriptive survey design. The population comprised 12,364 teachers from 2,721 primary schools, with a sample of 618 teachers from 136 schools selected through a multistage sampling procedure. Smart climate change measures questionnaire (SCCMQ) and key informant interview (KII) were used for data collection. The data collected were analyzed using mean and standard deviation to answer the research questions, while the Chi-square (χ2) test of goodness-of-fit was used to test the hypotheses at a 0.05 level of significance, with qualitative data analyzed using simple percentages, tables, and bar charts. The findings highlight the significant positive impact of green building practices on the efficient administration of primary schools in Benue State, Nigeria. The crucial integration of environmentally sustainable construction methods is emphasized for enhancing overall management in these educational institutions. In addition, the research demonstrates a favorable impact on the adoption of renewable energy solutions and effective school management. The utilization of renewable energy not only aligns with eco-friendly practices but also contributes to the overall operational efficiency and sustainability of primary schools in the region. The study recommends that educational authorities and policymakers prioritize integrating green building practices and renewable energy solutions, pointing towards the prospect of improved governance and functionality for primary education facilities not only in Benue but throughout Nigeria.

Keywords: smart, climate change, effective management, green building, renewable energy

Procedia PDF Downloads 66
3122 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia

Procedia PDF Downloads 378
3121 The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus

Authors: Sinem Yıldırım, Çimen Özburak, Özge Özden

Abstract:

Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus.

Keywords: green roofs, indoor temperature, vegetation, mediterranean, cyprus

Procedia PDF Downloads 207
3120 Design of Organic Inhibitors from Quantum Chemistry

Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene

Abstract:

The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.

Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT

Procedia PDF Downloads 234
3119 A Generalised Propensity Score Analysis to Investigate the Influence of Agricultural Research Systems on Greenhouse Gas Emissions

Authors: Spada Alessia, Fiore Mariantonietta, Lamonaca Emilia, Contò Francesco

Abstract:

Bioeconomy can give the chance to face new global challenges and can move ahead the transition from a waste economy to an economy based on renewable resources and sustainable consumption. Air pollution is a grave issue in green challenges, mainly caused by anthropogenic factors. The agriculture sector is a great contributor to global greenhouse gases (GHGs) emissions due to lacking efficient management of the resources involved and research policies. In particular, livestock sector contributes to emissions of GHGs, deforestation, and nutrient imbalances. More effective agricultural research systems and technologies are crucial in order to improve farm productivity but also to reduce the GHGs emissions. Using data from FAOSTAT statistics and concern the EU countries; the aim of this research is to evaluate the impact of ASTI R&D (Agricultural Science and Technology Indicators) on GHGs emissions for countries EU in 2015 by generalized propensity score procedures, estimating a dose-response function, also considering a set of covariates. Expected results show the existence of the influence of ASTI R&D on GHGs across EU countries. Implications are crucial: reducing GHGs emissions by means of R&D based policies and correlatively reaching eco-friendly management of required resources by means of green available practices could have a crucial role for fair intra-generational implications.

Keywords: agricultural research systems, dose-response function, generalized propensity score, GHG emissions

Procedia PDF Downloads 278
3118 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 370
3117 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 75
3116 The Influence of Green Supply Chain Management Practices' Implementation on Organizational Performance: An Empirical Case Study in Spain

Authors: Keivan Amirbagheri, Ana Nuñez-Carballosa, Laura Guitart-Tarrés

Abstract:

Over the last couple of decades, enterprises have begun to accept the need for environmental management and have started to implement environmental management programs to compete in the markets. The implementation of green supply chain management (GSCM) practices can provide valuable opportunities to improve firm performance. Through the prior investigations, the ascending tendency of the numbers of published papers in the field of green supply chain management practices has been reported and it shows the high interest level of the authors to work in this area. Besides, there is still a gap to study more about the relationship of GSCM to the organizational performance (OP). So, the purpose of this research is to study the practices related to green supply chain management that influence the results of the company as an organizational performance. Based on our previous works, from one part we have collected these GSCM practices (planning, operational, and communication practices) and classified them through conducting some literature reviews to analyze their effects on the OP’s factors (balanced scorecard’s perspectives). To do so we design a case study methodology through semi-structured interviews and secondary data from some multinational well-known companies based in Spain. The cases have been selected with the criterion of trying to collect members of the entire supply chain to have a vision as global as possible. The results report the considerable influence of green supply chain management practices on the organizational performance of the companies of the study. In addition, they represent that the implementation of green supply chain management practices especially in a long-term perspective can be economically justified. From the point of view of the personal, they feel better about being a member of this type of company that has been structured on environmental issues. Also, for these companies, the image that has been created by the implementation of these practices helps them to facilitate their marketing program.

Keywords: green supply chain management, organizational performance, case study, Spain

Procedia PDF Downloads 190
3115 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems

Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng

Abstract:

Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.

Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system

Procedia PDF Downloads 196
3114 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 82
3113 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 321
3112 Prospective Use of Rice Husk Ash to Produce Concrete in India

Authors: Kalyan Kumar Moulick

Abstract:

In this paper the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. The effect of RHA on concrete discussed. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement.

Keywords: cement replacement, concrete, environmental friendly, rice husk ash

Procedia PDF Downloads 516
3111 Landscape Factors Eliciting the Sense of Relaxation in Urban Green Space

Authors: Kaowen Grace Chang

Abstract:

Urban green spaces play an important role in promoting wellbeing through the sense of relaxation for urban residents. Among many designing factors, what the principal ones that could effectively influence people’s sense of relaxation? And, what are the relationship between the sense of relaxation and those factors? Regarding those questions, there is still little evidence for sufficient support. Therefore, the purpose of this study, based on individual responses to environmental information, is to investigate the landscape factors that relate to well-being through the sense of relaxation in mixed-use urban environments. We conducted the experimental design and model construction utilizing choice-based conjoint analysis to test the factors of plant arrangement pattern, plant trimming condition, the distance to visible automobile, the number of landmark objects, and the depth of view. Through the operation of balanced fractional orthogonal design, the goal is to know the relationship between the sense of relaxation and different designs. In a result, the three factors of plant trimming condition, the distance to visible automobile, and the depth of view shed are significantly effective to the sense of relaxation. The stronger magnitude of maintenance and trimming, the further distance to visible automobiles, and deeper view shed that allow the users to see further scenes could significantly promote green space users’ sense of relaxation in urban green spaces.

Keywords: urban green space, landscape planning and design, sense of relaxation, choice model

Procedia PDF Downloads 148
3110 Enzyme Immobilization: A Strategy to Overcome Enzyme Limitations and Expand Their Applications

Authors: Charline Monnier, Rudolf Andrys, Irene Castellino, Lucie Zemanova

Abstract:

Due to their inherent sustainability and compatibility with green chemistry principles, enzymes are attracting increasing attention for various applications like bioremediation or biocatalysis. These natural catalysts boast remarkable substrate specificity and operate under mild biological conditions. However, their intrinsic limitations, such as instability at high temperatures or in organic solvents, impede their wider applicability. Enzyme immobilization on supportive matrices emerges as a promising strategy to address these challenges. This approach not only facilitates enzyme reusability but also offers the potential to modulate their stability, activity, and selectivity. The present study investigates the immobilization and application of two distinct groups of hydrolases on supportive matrices: PETases, naturally capable of PolyEthylene Terephthalate (PET) degradation, and cholinesterases (ChEs), key enzymes in neurotransmitter regulation. All tested enzymes will be immobilized on porous and non-porous particles using both covalent and non-covalent methods. Additionally, the stability of PETases and cholinesterases will be explored, followed by exposure to denaturing conditions to assess their resilience under harsh conditions. Furthermore, due to the exceptional catalytic efficiency and selectivity, their biocatalytic efficiency will be tested using xenobiotic substrates, aiming to establish them as replacements for conventional chemical catalysts in environmentally friendly processes. By exploiting the power of enzyme immobilization, this research strives to unlock the full potential of these biocatalysts for sustainable and efficient technological advancements.

Keywords: biocatalysis, bioremediation, enzyme efficiency, enzyme immobilization, green chemistry

Procedia PDF Downloads 57
3109 A Review: Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered

Keywords: building, construction, recycled materials, waste management

Procedia PDF Downloads 107
3108 Green Ports: Innovation Adopters or Innovation Developers

Authors: Marco Ferretti, Marcello Risitano, Maria Cristina Pietronudo, Lina Ozturk

Abstract:

A green port is the result of a sustainable long-term strategy adopted by an entire port infrastructure, therefore by the set of actors involved in port activities. The strategy aims to realise the development of sustainable port infrastructure focused on the reduction of negative environmental impacts without jeopardising economic growth. Green technology represents the core tool to implement sustainable solutions, however, they are not a magic bullet. Ports have always been integrated in the local territory affecting the environment in which they operate, therefore, the sustainable strategy should fit with the entire local systems. Therefore, adopting a sustainable strategy means to know how to involve and engage a wide stakeholders’ network (industries, production, markets, citizens, and public authority). The existing research on the topic has not well integrated this perspective with those of sustainability. Research on green ports have mixed the sustainability aspects with those on the maritime industry, neglecting dynamics that lead to the development of the green port phenomenon. We propose an analysis of green ports adopting the lens of ecosystem studies in the field of management. The ecosystem approach provides a way to model relations that enable green solutions and green practices in a port ecosystem. However, due to the local dimension of a port and the port trend on innovation, i.e., sustainable innovation, we draw to a specific concept of ecosystem, those on local innovation systems. More precisely, we explore if a green port is a local innovation system engaged in developing sustainable innovation with a large impact on the territory or merely an innovation adopter. To address this issue, we adopt a comparative case study selecting two innovative ports in Europe: Rotterdam and Genova. The case study is a research method focused on understanding the dynamics in a specific situation and can be used to provide a description of real circumstances. Preliminary results show two different approaches in supporting sustainable innovation: one represented by Rotterdam, a pioneer in competitiveness and sustainability, and the second one represented by Genoa, an example of technology adopter. The paper intends to provide a better understanding of how sustainable innovations are developed and in which manner a network of port and local stakeholder support this process. Furthermore, it proposes a taxonomy of green ports as developers and adopters of sustainable innovation, suggesting also best practices to model relationships that enable the port ecosystem in applying a sustainable strategy.

Keywords: green port, innovation, sustainability, local innovation systems

Procedia PDF Downloads 120
3107 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation.

Keywords: hydrogen, well bore integrity, clean energy, cementing

Procedia PDF Downloads 215
3106 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines

Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu

Abstract:

The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.

Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity

Procedia PDF Downloads 490
3105 Green Synthesis Approach for Renewable Textile Coating and Their Mechanical and Thermal Properties

Authors: Heba Gamal Abd Elhaleem Elsayed, Nour F Attia

Abstract:

The extensive use of textile and textile based materials in various applications including industrial applications are increasing regularly due to their interesting properties which require rapid development in their functions to be adapted to these applications [1-3]. Herein, green, new and renewable smart coating was developed for furniture textile fabrics. Facile and single step method was used for synthesis of green coating based on mandarin peel and chitosan. As, the mandarin peel as fruit waste material was dried, grinded and directly dispersed in chitosan solution producing new green coating composite and then coated on textile fabrics. The mass loadings of green mandarin peel powder was varied on 20-70 wt% and optimized. Thermal stability of coated textile fabrics was enhanced and char yield was improved compared to uncoated one. The charring effect of mandarin peel powder coated samples was significantly enhanced anticipating good flame retardancy effect. The tensile strength of the coated textile fabrics was improved achieved 35% improvement compared to uncoated sample. The interaction between the renewable coating and textile was evaluated. The morphology of uncoated and coated textile fabrics was studied using microscopic technique. Additionally, based on thermal properties of mandarin peel powder it could be promising flame retardant for textile fabrics. This study open new avenues for finishing textile fabrics with enhanced thermal, flame retardancy and mechanical properties with cost-effective and renewable green and effective coating

Keywords: flame retardant , Thermal Properties, Textile Coating , Renewable Textile

Procedia PDF Downloads 141
3104 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 443
3103 Willingness to Adopt "Green Steel" Products: A Case Study from the Automotive Sector

Authors: Hasan Muslemani, Jeffrey Wilson, Xi Liang, Francisco Ascui, Katharina Kaesehage

Abstract:

This paper aims to examine consumer behaviour towards, and the willingness to adopt, green steel use in the automotive sector, in order to identify potential barriers and opportunities for its widespread adoption. Semi-structured interviews were held with experts from global, regional and country-specific industry associations and automakers. The analysis shows there is a new shift towards lifecycle thinking in the sector, although these efforts have been voluntary and driven by customer and employee pressures rather than regulation. The paper further appraises possible demand for green steel within different vehicle types (based on size and powertrain), and shows that manufacturers of electric heavy-duty vehicles are most likely to adopt green steel in the first instance, given the amount of incorporated steel in the vehicles and the fact that lifecycle emissions lie predominantly in their manufacturing phase. A case for green advanced higher-strength steels (AHSS) can also be made in light-duty passenger vehicles, which may mitigate competition from light-weight alternative materials in terms of cost and greenness (depending on source and utilisation zones). This work builds on a wide sustainability-related literature in the automotive sector and highlights areas in need of urgent action if the sector as a whole were to meet its Paris Agreement climate targets, in particular a need to revisit current CO2 performance regulations to include Scope 1 and Scope 2 emissions, engage in educational green marketing campaigns, and explore innovative market-based mechanisms to bridge the gap between relatively-low carbon abatement costs of steelmaking and high abatement costs of vehicle manufacturing.

Keywords: Green steel, Consumer behaviour, Automotive industry, Environmental sustainability

Procedia PDF Downloads 164
3102 Impact of Green Marketing Mix Strategy and CSR on Organizational Performance: An Empirical Study of Manufacturing Sector of Pakistan

Authors: Syeda Shawana Mahasan, Muhammad Farooq Akhtar

Abstract:

The objective of this study is to analyze the influence of the green marketing mix strategy and corporate social responsibility (CSR) on the performance of an organization, taking into account the mediating effect of corporate image. The impact of frugal innovation and corporate activism is being examined. The data was gathered from executives at various levels of management, including top, middle, and lower-level managers, from a total of 550 manufacturing enterprises of different sizes, ranging from small to medium to large. The collected replies are processed and analyzed using SMART PLS version 4.0.0.0. The application of PLS-SEM demonstrates that the green marketing mix strategy and corporate social responsibility have a significant impact on organizational performance. Therefore, it is imperative for organizations to effectively adopt environmentally sustainable and socially conscious methods within their operations. The results indicate that the corporate image has a key role in mediating the relationship between the green marketing mix strategy, corporate social responsibility, and organizational performance. This demonstrates the imperative for organizations to actively enhance their favorable reputation among stakeholders. The combination of frugal innovation and corporate activism enhances the connection between corporate image and organizational performance. The current study assists managers in recognizing the significance of these particular constructs in maintaining the long-term performance of the organization.

Keywords: green marketing mix strategy, CSR, corporate image, organizational performance, frugal innovation, corporate activism

Procedia PDF Downloads 40
3101 Revolution Biopolibag System Based on Water Hyacinth's Fiber as a Solution for Environmental Friendly Seeding and Seedling

Authors: Supriady R. P. Siregar, Rizki Barkah Aulia, Dhiya Fadilla Dewi

Abstract:

Polybag is a plastic that is used to seed plants. The common type that used for polybag is a synthetic that made from petroleum such as polyethylene. Beside the character of the raw material that are non-renewable and limited, synthetic polybag ability to disintegrate in the environment is very low. According to that situation, we need a solution to overcome these problems by creating an environmentally friendly polybag. In this research, using the water hyacinth plant fibers (Eichornia crassipes) as a major component in manufacturing the environmentally friendly polybag, the water hyacinth (Eichornia crassipes) contains approximately 60% cellulose. The research method used is an experiment by testing the mechanical characters and biodegradability bio-polybag water hyacinth fibers (Eichornia crassipes) on three medium that is dissolved in water, river water and buried in soil. The research shows bio-polybag of hyacinth fibers can rapidly degraded. This study is expected to be the beginning of the creation bio-polybag of water hyacinth fiber (Eichornia crassipes) and can be applied in agriculture.

Keywords: revolution, biopolybag, renewable, environment

Procedia PDF Downloads 240
3100 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.

Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine

Procedia PDF Downloads 256
3099 Urban Green Transitioning in The Face of Current Global Change: The Management Role of the Local Government and Residents

Authors: Titilope F. Onaolapo, Christiana A. Breed, Maya Pasgaard, Kristine E. Jensen, Peta Brom

Abstract:

In the face of fast-growing urbanization in most of the world's developing countries, there is a need to understand and address the risk and consequences involved in the indiscriminate use of urban green space. Tshwane city in South Africa has the potential to become one of the world's top biodiversity cities as South Africa is ranked one of the mega countries in biodiversity conservation, and Tshwane metropolitan municipality is the city with the wealthiest biodiversity with grassland biomes. In this study, we focus on the potentials and challenges of urban green transitioning from the Global South perspective with Tshwane city as the case study. We also address the issue of management conflicts that have resulted in informal and illegal activities in and around green spaces, with consequences such as land degradation, loss of livelihoods and biodiversity, and socio-ecological imbalances. A desk study review of eight policy frameworks related to green urban planning and development was done based on four GI principles: multifunctionality, connectivity, interdisciplinary and social inclusion. We interviewed 15 key informants in related departments in the city and administered 200 survey questionnaires among residents. We also had several workshops the other researchers and experts on biodiversity and ecosystem. We found out there is no specific document dedicated to green space management, and where green infrastructure was mentioned, it was focused on as an approach to climate mitigation and adaptation. Also, residents perceive green and open spaces as extra land that could be developed at will. We demonstrated the use of collaborative learning approaches in ecological and development research and the tying research to the existing frameworks, programs, and strategies. Based on this understanding. We outlined the need to incorporate principles of green infrastructure in policy frameworks on spatial planning and environmental development. Furthermore, we develop a model for co-management of green infrastructures by stakeholders, such as residents, developers, policymakers, and decision-makers, to maximize benefits. Our collaborative, interdisciplinary projects pursue SDG multifunctionality of goals 11 and 15 by simultaneously addressing issues around Sustainable Cities and Communities, Climate Action, Life on Land, and Strong Institutions, and halt and reverse land degradation and biodiversity.

Keywords: governance, green infrastructure, South Africa, sustainable development, urban planning, Tshwane

Procedia PDF Downloads 122
3098 Green Amphiphilic Nanostructures from CNSL

Authors: Ermelinda Bloise, Giuseppe Mele

Abstract:

In recent years, Cashew Nut Shell Liquid (CNSL) has received great attention from researchers because it is an abundant waste material from the agri-food industry that fits perfectly into the idea of reusing waste from renewable resources for the production of new functional materials. The different components of this waste showed a certain chemical versatility and, above all, various biological activities. Take advantage of their surface-active capacity in particular conditions, various amphiphilic nanostructures have been prepared through sustainable chemical processes using cardanol (CA) and anacardic acid (AA) as two main components of the CNSL. In-batch solvent-free method has been developed to obtain new versatile green nanovesicles capable of effectively incorporating and stabilizing both hydrophobic and hydrophilic bioactive molecules. Furthermore, these nanosystems have shown antioxidant and cytotoxic properties and, in vitroinvestigations, established that they efficiently taken-up some human cells. With the idea of meeting the principles of green chemistry, even more, some improvements of the synthetic procedure have been implemented in terms of milder temperature and pH conditions, producing one-component nanovesicles, in which the AA and CA-derivatives are the sole building block of the green nanosystems. Finally, a new experimental approach has been carried out by a microfluidic route, with the advantage to operate at continuous flows, with a reduced amount of reagents, waste, and at lower temperatures, ensuring the achievement of size-monodisperse amphiphilic nanostructures that do not need further purification steps.

Keywords: bioactive nanosystems, bio-based renewables, cashew oil, green nanoformulations

Procedia PDF Downloads 90
3097 Cyanobacterial Biofertilizer Technology for Rice Producing Farmers at Nashik District

Authors: Krishna N. Gaikwad, V. R. Kakulte

Abstract:

Rice (Oryza sativa L.) is the main cereal crop of tribal people of western part of Nasik district. There is a wide fluctuation in yield due to the factors like uncertain rains, pest diseases, socio-economic status of farmers, lack of awareness and traditional knowledge of farmers about agro-practices. In order to achieve more yield, it is a need to adopt low cost, eco-friendly blue green algal biofertilizer technology. Communication of useful information to needy people is basic need in present situation. The paper reports different communication modes of paddy technologies, adoption about BGA technology, attitudinal changes of farmers and yield of rice production during year 2011 and 2012. The results indicate that there is significant effect of communication modes of improved BGA technology on rice yield.

Keywords: rice, BGA, biofertilizer, Oryza sativa L.

Procedia PDF Downloads 481
3096 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: embodied carbon footprint, Malaysian green homes

Procedia PDF Downloads 344
3095 A Facile Nanocomposite of Graphene Oxide Reinforced Chitosan/Poly-Nitroaniline Polymer as a Highly Efficient Adsorbent for Extracting Polycyclic Aromatic Hydrocarbons from Tea Samples

Authors: Adel M. Al-Shutairi, Ahmed H. Al-Zahrani

Abstract:

Tea is a popular beverage drunk by millions of people throughout the globe. Tea has considerable health advantages, in-cluding antioxidant, antibacterial, antiviral, chemopreventive, and anticarcinogenic properties. As a result of environmental pollution (atmospheric deposition) and the production process, tealeaves may also include a variety of dangerous substances, such as polycyclic aromatic hydrocarbons (PAHs). In this study, graphene oxide reinforced chitosan/poly-nitroaniline polymer was prepared to develop a sensitive and reliable solid phase extraction method (SPE) for extraction of PAH7 in tea samples, followed by high-performance liquid chromatography- fluorescence detection. The prepared adsorbent was validated in terms of linearity, the limit of detection, the limit of quantification, recovery (%), accuracy (%), and precision (%) for the determination of the PAH7 (benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[b]fluoranthene, Dibenzo[a,h]anthracene and Benzo[g,h,i]perylene) in tea samples. The concentration was determined in two types of tea commercially available in Saudi Arabia, including black tea and green tea. The maximum mean of Σ7PAHs in black tea samples was 68.23 ± 0.02 ug kg-1 and 26.68 ± 0.01 ug kg-1 in green tea samples. The minimum mean of Σ7PAHs in black tea samples was 37.93 ± 0.01 ug kg-1 and 15.26 ± 0.01 ug kg-1 in green tea samples. The mean value of benzo[a]pyrene in black tea samples ranged from 6.85 to 12.17 ug kg-1, where two samples exceeded the standard level (10 ug kg-1) established by the European Union (UE), while in green tea ranged from 1.78 to 2.81 ug kg-1. Low levels of Σ7PAHs in green tea samples were detected in comparison with black tea samples.

Keywords: polycyclic aromatic hydrocarbons, CS, PNA and GO, black/green tea, solid phase extraction, Saudi Arabia

Procedia PDF Downloads 96