Search results for: geotextile tube
307 Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars
Authors: Nikol Žižková
Abstract:
The aim of this study was to observe the behavior of polymer-modified cement mortars with regard to the use of a pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse.Keywords: recycled waste glass, polymer-modified mortars, pozzolanic admixture, ethylene/vinyl acetate copolymer
Procedia PDF Downloads 255306 Three Dimensional Computational Fluid Dynamics Simulation of Wall Condensation inside Inclined Tubes
Authors: Amirhosein Moonesi Shabestary, Eckhard Krepper, Dirk Lucas
Abstract:
The current PhD project comprises CFD-modeling and simulation of condensation and heat transfer inside horizontal pipes. Condensation plays an important role in emergency cooling systems of reactors. The emergency cooling system consists of inclined horizontal pipes which are immersed in a tank of subcooled water. In the case of an accident the water level in the core is decreasing, steam comes in the emergency pipes, and due to the subcooled water around the pipe, this steam will start to condense. These horizontal pipes act as a strong heat sink which is responsible for a quick depressurization of the reactor core when any accident happens. This project is defined in order to model all these processes which happening in the emergency cooling systems. The most focus of the project is on detection of different morphologies such as annular flow, stratified flow, slug flow and plug flow. This project is an ongoing project which has been started 1 year ago in Helmholtz Zentrum Dresden Rossendorf (HZDR), Fluid Dynamics department. In HZDR most in cooperation with ANSYS different models are developed for modeling multiphase flows. Inhomogeneous MUSIG model considers the bubble size distribution and is used for modeling small-scaled dispersed gas phase. AIAD (Algebraic Interfacial Area Density Model) is developed for detection of the local morphology and corresponding switch between them. The recent model is GENTOP combines both concepts. GENTOP is able to simulate co-existing large-scaled (continuous) and small-scaled (polydispersed) structures. All these models are validated for adiabatic cases without any phase change. Therefore, the start point of the current PhD project is using the available models and trying to integrate phase transition and wall condensing models into them. In order to simplify the idea of condensation inside horizontal tubes, 3 steps have been defined. The first step is the investigation of condensation inside a horizontal tube by considering only direct contact condensation (DCC) and neglect wall condensation. Therefore, the inlet of the pipe is considered to be annular flow. In this step, AIAD model is used in order to detect the interface. The second step is the extension of the model to consider wall condensation as well which is closer to the reality. In this step, the inlet is pure steam, and due to the wall condensation, a liquid film occurs near the wall which leads to annular flow. The last step will be modeling of different morphologies which are occurring inside the tube during the condensation via using GENTOP model. By using GENTOP, the dispersed phase is able to be considered and simulated. Finally, the results of the simulations will be validated by experimental data which will be available also in HZDR.Keywords: wall condensation, direct contact condensation, AIAD model, morphology detection
Procedia PDF Downloads 304305 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology
Authors: Vasu Velagapudi, G. Suresh
Abstract:
PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate
Procedia PDF Downloads 395304 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids
Authors: Caroline E. Mendes, Alberto C. Badino
Abstract:
Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.Keywords: bubble column, internal loop airlift, gas hold-up, kLa
Procedia PDF Downloads 274303 Breakdown Voltage Measurement of High Voltage Transformers Oils Using an Active Microwave Resonator Sensor
Authors: Ahmed A. Al-Mudhafar, Ali A. Abduljabar, Hayder Jawad Albattat
Abstract:
This work suggests a new microwave resonator sensor (MRS) device for measuring the oil’s breakdown voltage of high voltage transformers. A precise high-sensitivity sensor is designed and manufactured based on a microstrip split ring resonator (SRR). To improve the sensor sensitivity, a RF amplifier of 30 dB gain is linked through a transmission line of 50Ω.The sensor operates at a microwave band (L) with a quality factor of 1.35x105 when it is loaded with an empty tube. In this work, the sensor has been tested with three samples of high voltage transformer oil of different ages (new, middle, and damaged) where the quality factor differs with each sample. A mathematical model was built to calculate the breakdown voltage of the transformer oils and the accuracy of the results was higher than 90%.Keywords: active resonator sensor, oil breakdown voltage, transformers oils, quality factor
Procedia PDF Downloads 269302 Blood Clot Emulsification via Ultrasonic Thrombolysis Device
Authors: Sun Tao, Lou Liang, Tan Xing Haw Marvin, Gu Yuandong Alex
Abstract:
Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment.Keywords: microfabrication, blood clot, ultrasonic thrombolysis device, ultrasonic device
Procedia PDF Downloads 449301 Numerical Prediction of Entropy Generation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.Keywords: heat exchangers, porous medium, second law approach, turbulent flow
Procedia PDF Downloads 300300 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation
Authors: Olukunle C. Olawole, Dilip Kumar De
Abstract:
We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density
Procedia PDF Downloads 378299 Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon
Authors: Alex Ellery
Abstract:
Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.Keywords: 3D printing, in-situ resource utilization, self-replication technology, space-based geoengineering
Procedia PDF Downloads 423298 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle
Abstract:
The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm
Procedia PDF Downloads 307297 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment
Authors: Thomas Paris, Vincent Bruyere, Patrick Namy
Abstract:
A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.Keywords: compressible flow, fluid mechanics, heat transfer, porous media
Procedia PDF Downloads 406296 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles
Authors: Priya Jaswal, Vivek, S. K. Sinha
Abstract:
One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.Keywords: coir, geotextile, treated, unpaved
Procedia PDF Downloads 94295 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200, in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.Keywords: nanofluid, heat transfer, unsteady flow, forced convection, cross-flow
Procedia PDF Downloads 397294 The Effect of Degraded Shock Absorbers on the Safety-Critical Tipping and Rolling Behaviour of Passenger Cars
Authors: Tobias Schramm, Günther Prokop
Abstract:
In Germany, the number of road fatalities has been falling since 2010 at a more moderate rate than before. At the same time, the average age of all registered passenger cars in Germany is rising continuously. Studies show that there is a correlation between the age and mileage of passenger cars and the degradation of their chassis components. Various studies show that degraded shock absorbers increase the braking distance of passenger cars and have a negative impact on driving stability. The exact effect of degraded vehicle shock absorbers on road safety is still the subject of research. A shock absorber examination as part of the periodic technical inspection is only mandatory in very few countries. In Germany, there is as yet no requirement for such a shock absorber examination. More comprehensive findings on the effect of degraded shock absorbers on the safety-critical driving dynamics of passenger cars can provide further arguments for the introduction of mandatory shock absorber testing as part of the periodic technical inspection. The specific effect chains of untripped rollover accidents are also still the subject of research. However, current research results show that the high proportion of sport utility vehicles in the vehicle field significantly increases the probability of untripped rollover accidents. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers on the safety-critical tipping and rolling behaviour of passenger cars, which can lead to untripped rollover accidents. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was validated with steering wheel angle sinus sweep driving maneuvers. The model was then used to simulate steering wheel angle sine and fishhook maneuvers, which investigate the safety-critical tipping and rolling behavior of passenger cars. The simulations were carried out in a realistic parameter space in order to demonstrate the effect of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the tipping and rolling behavior of all passenger cars. Shock absorber degradation leads to a significant increase in the observed roll angles, particularly in the range of the roll natural frequency. This superelevation has a negative effect on the wheel load distribution during the driving maneuvers investigated. In particular, the height of the vehicle's center of gravity and the stabilizer stiffness of the vehicles has a major influence on the effect of degraded shock absorbers on the overturning and rolling behaviour of passenger cars.Keywords: numerical simulation, safety-critical driving dynamics, suspension degradation, tipping and rolling behavior of passenger cars, vehicle shock absorber
Procedia PDF Downloads 10293 Simulation of Welded Steel Tube Subjected to Internal Pressure
Authors: H. Zedira, M. T. Hannachi, H. Djebaili, B. Daheche
Abstract:
The rapid pace of technology development and strong competition in the market, prompted us to consider the field of manufacturing of steel pipes by a process complies fully with the requirements of industrial induction welding is high frequency (HF), this technique is better known today in Algeria, more precisely for the manufacture of tubes diameters Single Annabib TG Tebessa. The aim of our study is based on the characterization of processes controlling the mechanical behavior of steel pipes (type E24-2), welded by high frequency induction, considering the different tests and among the most destructive known test internal pressure. The internal pressure test is performed according to the application area of welded pipes, or as leak test, either as a test of strength (bursting). All tubes are subjected to a hydraulic test pressure of 50 bar kept at room temperature for a period of 6 seconds. This study provides information that helps optimize the design and implementation to predict the behavior of the tubes during operation.Keywords: castem, pressure, stress, tubes, thickness
Procedia PDF Downloads 326292 Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler
Authors: Teewin Plangsrinont, Wasawat Nakkiew
Abstract:
In this study, computational fluid dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2 percent.Keywords: computational fluid dynamics, tangentially fired boiler, thermal power plant, water soot blower
Procedia PDF Downloads 209291 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling
Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte
Abstract:
This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data
Procedia PDF Downloads 329290 An Augmented Reality Based Self-Learning Support System for Skills Training
Authors: Chinlun Lai, Yu-Mei Chang
Abstract:
In this paper, an augmented reality learning support system is proposed to replace the traditional teaching tool thus to help students improve their learning motivation, effectiveness, and efficiency. The system can not only reduce the exhaust of educational hardware and realistic material, but also provide an eco-friendly and self-learning practical environment in any time and anywhere with immediate practical experiences feedback. To achieve this, an interactive self-training methodology which containing step by step operation directions is designed using virtual 3D scenario and wearable device platforms. The course of nasogastric tube care of nursing skills is selected as the test example for self-learning and online test. From the experimental results, it is observed that the support system can not only increase the student’s learning interest but also improve the learning performance than the traditional teaching methods. Thus, it fulfills the strategy of learning by practice while reducing the related cost and effort significantly and is practical in various fields.Keywords: augmented reality technology, learning support system, self-learning, simulation learning method
Procedia PDF Downloads 167289 Soil Moisture Regulation in Irrigated Agriculture
Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili
Abstract:
Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.Keywords: seepage, soil, velocity, water
Procedia PDF Downloads 462288 The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography
Authors: Noor Arda Adrina Daud, Mohd Hanafi Ali
Abstract:
The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality.Keywords: compensating filter, aluminum, image quality, lateral, thoracolumbar
Procedia PDF Downloads 514287 Intensive Care Experience of Providing Palliative Care for a Terminal Lung Cancer Patient
Authors: Ting-I Lin
Abstract:
Objective: This article explores the nursing care experience of a 51-year-old terminal lung cancer patient admitted to the intensive care unit (ICU) following an upper right lobectomy. The patient initially sought emergency treatment due to worsening cough and dyspnea, which led to the placement of an endotracheal tube following sudden deterioration. Subsequent CT scans and chest X-rays revealed a tumor in the upper right lung with metastases to the lungs, liver, bones, and adrenal glands. The patient underwent a right upper lobectomy and a wedge resection of the right middle lobe. Pathology staging: T4N3M1c and the patient was diagnosed with advanced cancer postoperatively. Method: During the care period, nursing staff continuously monitored the patient’s physiological data through observations, direct care, interviews, physical assessments, and review of the patient’s medical records. The nursing team collaborated with the critical care team and the palliative care team, using Gordon's Eleven Functional Health Patterns to conduct a comprehensive assessment. The key health problems identified included pain related to postoperative cancer resection and invasive devices, fear of death due to rapid disease progression, and altered tissue perfusion associated with hemodynamic instability. Results: Postoperatively, the patient experienced pain from the surgical wound and dyspnea due to extensive metastasis, often leading to confusion. Through the adjustment of pain medication, the patient’s discomfort was alleviated, using Morphine 8 mg in 0.9% normal saline 60 ml IV drip q6h prn, and Ultracet 37.5 mg/325 mg 1# PO q6h. Additionally, lavender essential oil inhalation and limb massage were provided for 15 minutes four times a day. The patient’s FLACC pain score decreased from 7 to below 3. After respiratory training, the endotracheal tube was successfully removed, and the patient was weaned off the ventilator. Triflow exercises were used to promote alveolar expansion, with the goal of achieving 2 balls for 10 seconds, 5 repetitions per session, 6-8 times a day. The patient’s breathing stabilized at 16-18 breaths per minute, body temperature remained between 35.8°C and 36.1°C, and the mean arterial pressure was maintained between 60-80 mmHg. Conclusion: The critical care team and the palliative care team held a family meeting to discuss not only the patient’s care but also the emotional well-being of the family. Visiting hours were increased to two times per day, one hour each time, allowing the patient and family to express love and gratitude, which strengthened their emotional connection and reduced the patient’s anxiety from severe to mild. The family expressed that they had no regrets. After the patient was transferred to the general ward, the nursing team continued to provide end-of-life care with genuine empathy, compassion, and religious support, helping both the patient and family through the final stage of life.Keywords: multiple metastases, lung cancer, palliative care, nursing experience
Procedia PDF Downloads 26286 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine
Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana
Abstract:
Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.Keywords: flow forming, pressure vessel, four rollers, feed rate, spindle speed, cold work
Procedia PDF Downloads 331285 Flexural Behavior of Light-Gauge Steel Box Sections Filled with Normal and Recycled Aggregates Concrete
Authors: Rola El-Nimri, Mu’Tasime Abdel-Jaber, Yasser Hunaiti
Abstract:
The flexural behavior of light-gauge steel box sections filled with recycled concrete was assessed through an experimental program involving 15 composite beams. Recycled concrete was obtained by replacing natural aggregates (NA) with recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) with replacement levels of 20%, 40%, 60%, 80%, and 100% by the total weight of NA. In addition, RCA and RAP were incorporated in the same mixes with replacement levels of (1) 20% RCA and 80% RAP; (2) 40% RCA and 60% RAP; (3) 60% RCA and 40% RAP; and (4) 80% RCA and 20% RAP. A comparison between the experimental capacities and the theoretically predicted values according to Eurocode 4 (EC4) was made as well. Results proved that the ultimate capacity of composite beams decreased with the increase of recycled aggregate (RA) percentage and EC4 was conservative in predicting the ultimate capacity of composite beams.Keywords: flexure, light gauge, recycled asphalt pavement, recycled concrete aggregate, steel tube
Procedia PDF Downloads 199284 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation
Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha
Abstract:
This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.Keywords: pressure contour, surface tension, volume of fluid, velocity field
Procedia PDF Downloads 405283 Effect of Preconception Picture-Based Nutrition Education on Knowledge and Adherence to Iron-Folic Acid Supplementation Among Women Planning to Be Pregnant in Ethiopia
Authors: Anteneh Berhane Yeyi, Tefera Belachew
Abstract:
Any woman who could become pregnant is at risk of having a baby with neural tube defects (NTDs). A spontaneous aborted women with immediately preceding pregnancy may have an increased risk of develop NTDs. Ethiopia has one of the highest rates of micronutrient deficiencies, including folate and iron deficiency. Currently, in Ethiopia, NTDs is emerged as a public health concern. Even if Ethiopia, has implement different strategies for reducing maternal and neonatal mortality and morbidity, there is no room in the health care system and lack of integration for preventing the risk of NTDs for those women who aborted spontaneously and women who discontinue long acting contraception to become pregnant. The purpose of this study was to evaluate the effect of preconception picture-based nutrition education on knowledge and adherence to iron-folic acid supplement (IFAS) intake to reduce the risk of developing neural tube defects (NTDs) and iron deficiency anemia (IDA) among women who had a planned to pregnancy in Ethiopia, a country with a high burden of NTDs. Methodology: This study was conducted in Eastern Ethiopia. A double blinded parallel randomized controlled trial design was employed among women in the age group of 18-45 years who requested to interrupt modern contraceptive who have an intention to be pregnant and women with spontaneous abortion who refused to take a contraceptive. The interventional arm (n=122) received a preconception picture-based nutrition education with iron-folic acid supplement, and the control arm (n=122) received only preconception IFAS. In this study male partners were participated. Result: After three months of intervention the proportion of adherence to IFAS was 23% (n=56). With regard to adherence within the groups, 42.6% (n=52) in the intervention group and 3.3% (n=4) in the control group and the intervention group were significantly higher than in control group. In the intervention group the proportion of adherence to IFAS intake among participants increased by 40.1% and there were statistically difference (P<0.0001). The difference in difference between the two groups of adherence to IFAS intake was 37.6% and there were a statistical significance (P<0.0001). Level of knowledge between the groups did differ before and after intervention (P= 0.87 Vs P<0.0001). The overall the mean change in knowledge Mean (+SE) between group was 0.9 (+3.04 SE) and there were significant differences between two groups (P<0.001). Conclusion: In general this intervention is effective toward adherence to IFAS and a critical milestone to improve maternal health and reduce the neonate mortality due to NTDs and other advert effect of pregnancy and birth outcomes. This intervention is very short, simple, and cost effective and has potential for adaptation, feasible development to large-scale implementation in the existing health care system. Furthermore, this type of interventional approach has the potential to reduce the country's ANC program dropout rates and increase male partner’s participation on reproductive health.Keywords: NTDs, IFAS, WRA, Ethiopia
Procedia PDF Downloads 34282 X-Ray Photoelectron Spectroscopy Characterization of the Surface Layer on Inconel 625 after Exposition in Molten Salt
Authors: Marie Kudrnova, Jana Petru
Abstract:
This study is part of the international research - Materials for Molten Salt Reactors (MSR) and addresses the part of the project dealing with the corrosion behavior of candidate construction materials. Inconel 625 was characterized by x-ray photoelectron spectroscopy (XPS) before and after high–temperature experiment in molten salt. The experiment was performed in a horizontal tube furnace molten salt reactor, at 450 °C in argon, at atmospheric pressure, for 150 hours. Industrially produced HITEC salt was used (NaNO3, KNO3, NaNO2). The XPS study was carried out using the ESCAProbe P apparatus (Omicron Nanotechnology Ltd.) equipped with a monochromatic Al Kα (1486.6 eV) X-ray source. The surface layer on alloy 625 after exposure contains only Na, C, O, and Ni (as NiOx) and Nb (as NbOx BE 206.8 eV). Ni was detected in the metallic state (Ni0 – Ni 2p BE-852.7 eV, NiOx - Ni 2p BE-854.7 eV) after a short Ar sputtering because the oxide layer on the surface was very thin. Nickel oxides can form a protective layer in the molten salt, but only future long-term exposures can determine the suitability of Inconel 625 for MSR.Keywords: Inconel 625, molten salt, oxide layer, XPS
Procedia PDF Downloads 141281 Technology and Terror
Authors: Janet D. Fish
Abstract:
This paper will analyze how advanced information technology communications platform’s such as you tube, twitter, Facebook, and websites are being used in marketing cultural diversity on a global scale. The scope of this topic will encompass the use of marketing terror as a tool of educational understanding, accepting, and incorporating other ethnic groups into extremist Islamic cultural practices with an end goal of cultural assimilation. This paper will examine the impacts of various influences, such as globalism and technology on common public values and cultural diversity. Additionally, multiculturalism in public administration settings will be examined across cultures. Communications are a primary focus of review for this paper, the purpose of this review is to see how different technological platforms are currently being used as major tools of influence within the public sector. Technology and terror must become a primary concern for new public administrators in a modern world. While its existence is acknowledged, boundaries of legal recourse are currently few. Public administrators must understand the depth and reach of the future consequences of an unchecked process in the realm of technology and terror on a global scale.Keywords: inclusionism, exclusionism, technology, terror
Procedia PDF Downloads 386280 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling
Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim
Abstract:
Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force
Procedia PDF Downloads 388279 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype
Authors: Tine Cencič, Marko Hočevar, Brane Širok
Abstract:
An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics
Procedia PDF Downloads 415278 Histogenesis of the Stomach of Pre-Hatching Quail: A Light and Electron Microscopic Study
Authors: Soha A Soliman, Yasser A Ahmed, Mohamed A Khalaf
Abstract:
Although the enormous literature describing the histology of the stomach of different avian species during the posthatching development, the available literature on the pre-hatching development of quail stomach development is scanty. Thus, the current study was undertaken to provide a careful description of the main histological events during the embryonic development of quail stomach. To achieve this aim, daily histological specimens from the stomach of quail of 4 days post-incubation till the day 17 (few hours before hatching) were examined with light microscopy. The current study showed that the primitive gut tube of the embryonic quail appeared at the 4th day post incubation, and both parts of stomach (proventriculus and gizzard) were similar in structure and composed of endodermal epithelium of pseudostratified type surrounded by undifferentiated mesenchymal tissue. The sequences of the developmental events in the gut tube were preceded in a cranio-caudal pattern. By the 5th day, the endodermal covering of the primitive proventriculus gave rise to sac-like invaginations. The primitive gizzard was distinguished into thick-walled bodies and thin-walled sacs. In the 6th day, the prospective proventricular glandular epithelium became canalized and the muscular layer was developed in the cranial part of the proventriculus, whereas the primitive muscular coat of the gizzard was represented by a layer of condensed mesenchyme. In the 7th day, the proventricular glandular epithelial invaginations increased in depth and number, while, the muscularis mucosa and the muscular layer began to be distinguished. In the 8th day, the myoblasts differentiated into spindle shaped smooth muscle fibers. In the 10th day, branching of the proventricular glands began. The branching continued later on. The surface and the glandular epithelium were transformed into simple columnar type in the 12th day. The epithelial covering of the gizzard gave rise to tubular invaginations lined by simple cuboidal epithelium and the surface epithelium became simple columnar. Canalization of the tubular glands was recognized in the 14th day. In the 15th day, the proventricular surface epithelium invaginated in an concentric manner around a central cavity to form immature secretory units. The central cavity was lined by eosinophilic cells which form the ductal epithelia. The peripheral lamellae were lined by basophilic cells; the undifferentiated oxyntico-peptic cells. Entero-endocrine cells stained positive for silver impregnation in the proventricular glands. The mucosal folding in the gizzard appeared in the 15th day to form the plicae and the sulci. The wall of the proventriculus and gizzard in the 17th day acquired the main histological features of post-hatching birds, but neither the surface nor the ductal epithelium were differentiated to mucous producing cells. The current results shoed be considered in the molecular developmental studies.Keywords: quail, proventriculus, gizzard, pre-hatching, histology
Procedia PDF Downloads 616