Search results for: fracture analysis
27878 A New Instrumented Drop-Weight Test Machine for Studying the Impact Behaviour of Reinforced Concrete Beams
Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams
Abstract:
Structures can be subjected to impact loading from various sources like earthquake, tsunami, missiles and explosions. The impact loading can cause different degrees of damage to concrete structures. The demand for strengthening and rehabilitation of damaged structures is increasing. In recent years, Car0bon Fibre Reinforced Polymer (CFRP) matrix composites has gain more attention for strengthening and repairing these structures. To study the impact behaviour of the reinforced concrete (RC) beams strengthened or repaired using CFRP, a heavy impact test machine was designed and manufactured .The machine included a newly designed support system for beams together with various instrumentation. This paper describes the support design configuration of the impact test machine, instrumentation and dynamic analysis of the concrete beams. To evaluate the efficiency of the new impact test machine, experimental impact tests were conducted on simple supported reinforced concrete beam. Different methods were used to determine the impact force and impact response of the RC beams in terms of inertia force, maximum deflection, reaction force and fracture energy. The manufactured impact test machine was successfully used in testing RC beams under impact loading and used successfully to test the reinforced concrete beams strengthened or repaired using CFRP under impact loading.Keywords: beam, concrete, impact, machine
Procedia PDF Downloads 42327877 A Comparative Study between FEM and Meshless Methods
Authors: Jay N. Vyas, Sachin Daxini
Abstract:
Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods
Procedia PDF Downloads 38927876 Wear Diagnosis of Diesel Engine Helical Gear
Authors: Surjit Angra, Gajanan Rane, Vinod Kumar, Sushma Rani
Abstract:
This paper presents metallurgical investigation of failed helical gear of diesel engine gear box used in a car. The failure had occurred near the bottomland of the tooth spacing. The failed surface was studied under Scanning Electron Microscope (SEM) and also visually investigated. The images produced through SEM at various magnifications were studied. Detailed metallurgical study indicates that failure was due to foreign material inclusion which is a casting defect. Further study also revealed pitting, spalling and inter-granular fracture as the causes of gear failure.Keywords: helical gear, scanning electron microscope, casting defect, pitting
Procedia PDF Downloads 45027875 Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry
Authors: Ralph Gruber, Martina Hafner, Theresia Greunz, Christian Reisecker, David Stifter
Abstract:
The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observedKeywords: aluminium alloys, dry film lubricants, automotive industry, adhesive bonding, corrosion
Procedia PDF Downloads 10227874 Change of Bone Density with Treatments of Intravenous Zoledronic Acid in Patients with Osteoporotic Distal Radial Fractures
Authors: Hong Je Kang, Young Chae Choi, Jin Sung Park, Isac Kim
Abstract:
Purpose: Osteoporotic fractures are an important among postmenopausal women. When osteoporotic distal radial fractures occur, osteoporosis must be treated to prevent the hip and spine fractures. Intravenous injection of Zoledronic acid is expected to improve preventing osteoporotic fractures. Many articles reported the effect of intravenous Zoledronic acid to BMD of the hip and spine fracture or non-fracture patients with low BMD. However, that with distal radial fractures has rarely been reported. Therefore, the authors decided to study the effect of Zoledronic acid in BMD score, bone union, and bone turnover markers in the patients who underwent volar plating due to osteoporotic distal radial fractures. Materials: From April 2018 to May 2022, postmenopausal women aged 55 years or older who had osteoporotic distal radial fractures and who underwent surgical treatment using volar plate fixation were included. Zoledronic acid (5mg) was injected intravenously between 3 and 5 days after surgery. BMD scores after 1 year of operation were compared with the initial scores. Bone turnover markers were measured before surgery, after 3 months, and after 1 year. Radiological follow-up was performed every 2 weeks until the bone union and at 1 year postoperatively. Clinical outcome indicators were measured one year after surgery, and the occurrence of side effects was observed. Result: Total of 23 patients were included, with a lumbar BMD T score of -2.89±0.2 before surgery to -2.27±0.3 one year after surgery (p=0.012) and a femoral neck BMD T score of -2.45±0.3 before surgery to -2.36±0.3 (p=0.041) after one year, and all were statistically significant. Measured as bone resorption markers, serum CTX-1 was 337.43±10.4 pg/mL before surgery, 160.86±8.7 pg/mL (p=0.022) after three months, and 250.12±12.7 pg/mL (p=0.031) after one year. Urinary NTX-1 was 39.24±2.2 ng/mL before surgery, 24.46±1.2 ng/mL (p=0.014) after three months and 30.35±1.6 ng/mL (p=0.042) after one year. Measured as bone formation markers, serum osteocalcin was 13.04±1.1 ng/mL before surgery, 8.84±0.7 ng/mL (p=0.037) after 3 months and 11.1±0.4 ng/mL (p=0.026) after one year. Serum bone-specific ALP was 11.24±0.9 IU/L before surgery, 8.25±0.9 IU/L (p=0.036) after three months, and 10.2±0.9 IU/L (p=0.027) after one year. All were statistically significant. All cases showed bone union within an average of 6.91±0.3 weeks without any signs of failure. Complications were found in 5 out of 23 cases (21.7%), such as headache, nausea, muscle pain, and fever. Conclusion: When Zoledronic acid was used, BMD was improved in both the spine and femoral neck. This may reduce the likelihood and subsequent morbidity of additional osteoporotic fractures. This study is meaningful in that there was no difference in the duration of bone union and radiological characteristics in patients with distal radial fractures administrated with intravenous BP early after the fractures, and improvement in BMD and bone turnover indicators was measured.Keywords: zeoldreonic acid, BMD, osteoporosis, distal radius
Procedia PDF Downloads 11527873 Defining Unconventional Hydrocarbon Parameter Using Shale Play Concept
Authors: Rudi Ryacudu, Edi Artono, Gema Wahyudi Purnama
Abstract:
Oil and gas consumption in Indonesia is currently on the rise due to its nation economic improvement. Unfortunately, Indonesia’s domestic oil production cannot meet it’s own consumption and Indonesia has lost its status as Oil and Gas exporter. Even worse, our conventional oil and gas reserve is declining. Unwilling to give up, the government of Indonesia has taken measures to invite investors to invest in domestic oil and gas exploration to find new potential reserve and ultimately increase production. Yet, it has not bear any fruit. Indonesia has taken steps now to explore new unconventional oil and gas play including Shale Gas, Shale Oil and Tight Sands to increase domestic production. These new plays require definite parameters to differentiate each concept. The purpose of this paper is to provide ways in defining unconventional hydrocarbon reservoir parameters in Shale Gas, Shale Oil and Tight Sands. The parameters would serve as an initial baseline for users to perform analysis of unconventional hydrocarbon plays. Some of the on going concerns or question to be answered in regards to unconventional hydrocarbon plays includes: 1. The TOC number, 2. Has it been well “cooked” and become a hydrocarbon, 3. What are the permeability and the porosity values, 4. Does it need a stimulation, 5. Does it has pores, and 6. Does it have sufficient thickness. In contrast with the common oil and gas conventional play, Shale Play assumes that hydrocarbon is retained and trapped in area with very low permeability. In most places in Indonesia, hydrocarbon migrates from source rock to reservoir. From this case, we could derive a theory that Kitchen and Source Rock are located right below the reservoir. It is the starting point for user or engineer to construct basin definition in relation with the tectonic play and depositional environment. Shale Play concept requires definition of characteristic, description and reservoir identification to discover reservoir that is technically and economically possible to develop. These are the steps users and engineers has to do to perform Shale Play: a. Calculate TOC and perform mineralogy analysis using water saturation and porosity value. b. Reconstruct basin that accumulate hydrocarbon c. Brittlenes Index calculated form petrophysical and distributed based on seismic multi attributes d. Integrated natural fracture analysis e. Best location to place a well.Keywords: unconventional hydrocarbon, shale gas, shale oil tight sand reservoir parameters, shale play
Procedia PDF Downloads 40627872 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 14827871 Effect of Martensite Content and Its Morphology on Mechanical Properties of Microalloyed Dual Phase Steel
Authors: M. K. Manoj, V. Pancholi, S. K. Nath
Abstract:
Microalloyed dual phase steels have been prepared by intercritical austenitisation (ICA) treatment of normalized steel at different temperature and time. Water quenching wad carried to obtain different martensite volume fraction (MVF) in DP steels. DP steels and normalized steels have been characterized by optical and scanning electron microscopy, Vickers hardness measurements and tensile properties determination. The effect of MVF and martensite morphology on mechanical properties and fracture behavior of microalloyed dual phase steels have been explained in the present work.Keywords: dual phase steel, martensite morphology, hardness, tensile strength
Procedia PDF Downloads 32827870 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel
Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi
Abstract:
The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point
Procedia PDF Downloads 10727869 Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics
Authors: J. Ismail, F. Zaïri, M. Naït-Abdelaziz, Z. Azari
Abstract:
In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor.Keywords: finite element modeling, continuum damage mechanics, indentation, cracks
Procedia PDF Downloads 42127868 Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites
Authors: Jain Jyoti, Jain Shorab, Sinha Shishir
Abstract:
In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface.Keywords: composite, mechanical, natural fiber, pineapple leaf fiber
Procedia PDF Downloads 23927867 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments
Authors: Manjinder Singh, Jasvinder Singh
Abstract:
Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite
Procedia PDF Downloads 52627866 Grain Boundary Detection Based on Superpixel Merges
Authors: Gaokai Liu
Abstract:
The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.Keywords: grain boundary detection, image segmentation, material images, region merging
Procedia PDF Downloads 16927865 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions
Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann
Abstract:
Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination
Procedia PDF Downloads 43627864 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel
Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda
Abstract:
Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation
Procedia PDF Downloads 21427863 Stress Corrosion Cracking, Parameters Affecting It, Problems Caused by It and Suggested Methods for Treatment: State of the Art
Authors: Adnan Zaid
Abstract:
Stress corrosion cracking (SCC) may be defined as a degradation of the mechanical properties of a material under the combined action of a tensile stress and corrosive environment of the susceptible material. It is a harmful phenomenon which might cause catastrophic fracture without a sign of prior warning. In this paper, the stress corrosion cracking, SCC, process, the parameters affecting it, and the different damages caused by it are given and discussed. Utilization of shot peening as a mean of enhancing the resistance of materials to SCC is given and discussed. Finally, a method for improving materials resistance to SCC by grain refining its structure by some refining elements prior to usage is suggested.Keywords: stress corrosion cracking, parameters, damages, treatment methods
Procedia PDF Downloads 33027862 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line
Procedia PDF Downloads 17827861 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines
Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz
Abstract:
Steel tubular towers serving as support structures for large wind turbines are subject to several hundred million stress cycles arising from the turbulent nature of the wind. This causes high-cycle fatigue which can govern tower design. The practice of maintaining the support structure after wind turbines reach its typical 20-year design life have become common, but without quantifying the changes in the reliability on the tower. There are several studies on this topic, but most of them are based on the S-N curve approach using the Miner’s rule damage summation method, the de-facto standard in the wind industry. However, the qualitative nature of Miner’s method makes desirable the use of fracture mechanics to measure the effects of fatigue in the capacity curve of the structure, which is important in order to evaluate the integrity and reliability of these towers. Temporal and spatially varying wind speed time histories are simulated based on power spectral density and coherence functions. Simulations are then applied to a SAP2000 finite element model and step-by-step analysis is used to obtain the stress time histories for a range of representative wind speeds expected during service conditions of the wind turbine. Rainflow method is then used to obtain cycle and stress range information of each of these time histories and a statistical analysis is performed to obtain the distribution parameters of each variable. Monte Carlo simulation is used here to evaluate crack growth over time in the tower base using the Paris-Erdogan equation. A nonlinear static pushover analysis to assess the capacity curve of the structure after a number of years is performed. The capacity curves are then used to evaluate the changes in reliability of a steel tower located in Oaxaca, Mexico, where wind energy facilities are expected to grow in the near future. Results show that fatigue on the tower base can have significant effects on the structural capacity of the wind turbine, especially after the 20-year design life when the crack growth curve starts behaving exponentially.Keywords: crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines
Procedia PDF Downloads 51727860 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics
Authors: Sleman Yahya Rasul
Abstract:
Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties
Procedia PDF Downloads 4327859 Recurrent Anterior Gleno-Humeral Instability Management by Modified Latarjet Procedure
Authors: Tarek Aly
Abstract:
The shoulder is the most mobile joint whose stability requires the interaction of both dynamic and static stabilizers. Its wide range of movement predisposes to a high susceptibility to dislocation, accounting for nearly 50% of all dislocations. This trauma typically results in ligament injury (e.g., labral tear, capsular strain) or bony fracture (e.g., loss of glenoid or humeral head bone), which frequently causes recurrent instability. Patients with significant glenoid defects may require Latarjet procedure, which involves transferring the coracoid to the antero-inferior glenoid rim. In spite of outstanding results, 15 to 30% of cases suffer complications. In this article, we discuss the diagnosis of recurrent shoulder instability, the surgical technique and various complications of Latarjet procedure.Keywords: recurrent, anterior gleno-humeral instability, latarjet, unstable shoulder
Procedia PDF Downloads 8427858 Case Report: Complex Regional Pain Syndrome
Authors: Farah Al Zaabi, Sarah Amrani
Abstract:
Complex regional pain syndrome (CRPS) is a chronic pain condition that develops in an extremity following a fracture, soft tissue injury, or surgery. It is a neuropathic pain disorder that is accompanied by the characteristic skin manifestations that are needed for the diagnosis. We report the case of a 30 year old male, who has findings consistent with CRPS and has been followed for over two years by multiple specialties within the healthcare system without obtaining a diagnosis. The symptoms he presented with were treated based on the specialty he was seeing, rather than unified and recognized as a single disease process. Our case highlights the complexity of chronic pain, which can sometimes present with skin manifestations, and the importance of involving a pain specialist early for both the medical and physical recovery of CRPS patients.Keywords: complex regional pain syndrome, chronic pain, skin changes of CRPS, dermatological manifestions of CRPS
Procedia PDF Downloads 15427857 Simplified Linearized Layering Method for Stress Intensity Factor Determination
Authors: Jeries J. Abou-Hanna, Bradley Storm
Abstract:
This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization
Procedia PDF Downloads 14327856 Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints
Authors: Chaitanya Sharma, Vikas Upadhyay, A. Tripathi
Abstract:
Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints.Keywords: friction stir welding, microstructure, tensile properties, fracture locations
Procedia PDF Downloads 44727855 Dynamic Modeling of Orthotropic Cracked Materials by X-FEM
Authors: S. Houcine Habib, B. Elkhalil Hachi, Mohamed Guesmi, Mohamed Haboussi
Abstract:
In this paper, dynamic fracture behaviors of cracked orthotropic structure are modeled using extended finite element method (X-FEM). In this approach, the finite element method model is first created and then enriched by special orthotropic crack tip enrichments and Heaviside functions in the framework of partition of unity. The mixed mode stress intensity factor (SIF) is computed using the interaction integral technique based on J-integral in order to predict cracking behavior of the structure. The developments of these procedures are programmed and introduced in a self-software platform code. To assess the accuracy of the developed code, results obtained by the proposed method are compared with those of literature.Keywords: X-FEM, composites, stress intensity factor, crack, dynamic orthotropic behavior
Procedia PDF Downloads 56927854 Geomechanics Properties of Tuzluca (Eastern. Turkey) Bedded Rock Salt and Geotechnical Safety
Authors: Mehmet Salih Bayraktutan
Abstract:
Geomechanical properties of Rock Salt Deposits in Tuzluca Salt Mine Area (Eastern Turkey) are studied for modeling the operation- excavation strategy. The purpose of this research focused on calculating the critical value of span height- which will meet the safety requirements. The Mine Site Tuzluca Hills consist of alternating parallel bedding of Salt ( NaCl ) and Gypsum ( CaS04 + 2 H20) rocks. Rock Salt beds are more resistant than narrow Gypsum interlayers. Rock Salt beds formed almost 97 percent of the total height of the Hill. Therefore, the geotechnical safety of Galleries depends on the mechanical criteria of Rock Salt Cores. General deposition of Tuzluca Basin was finally completed by Tuzluca Evaporites, as for the uppermost stratigraphic unit. They are currently running mining operations performed by classic mechanical excavation, room and pillar method. Rooms and Pillars are currently experiencing an initial stage of fracturing in places. Geotechnical safety of the whole mining area evaluated by Rock Mass Rating (RMR), Rock Quality Designation (RQD) spacing of joints, and the interaction of groundwater and fracture system. In general, bedded rock salt Show large lateral deformation capacity (while deformation modulus stays in relative small values, here E= 9.86 GPa). In such litho-stratigraphic environments, creep is a critical mechanism in failure. Rock Salt creep rate in steady-state is greater than interbedding layers. Under long-lasted compressive stresses, creep may cause shear displacements, partly using bedding planes. Eventually, steady-state creep in time returns to accelerated stages. Uniaxial compression creep tests on specimens were performed to have an idea of rock salt strength. To give an idea, on Rock Salt cores, average axial strength and strain are found as 18 - 24 MPa and 0.43-0.45 %, respectively. Uniaxial Compressive strength of 26- 32 MPa, from bedded rock salt cores. Elastic modulus is comparatively low, but lateral deformation of the rock salt is high under the uniaxial compression stress state. Poisson ratio = 0.44, break load = 156 kN, cohesion c= 12.8 kg/cm2, specific gravity SG=2.17 gr/cm3. Fracture System; spacing of fractures, joints, faults, offsets are evaluated under acting geodynamic mechanism. Two sand beds, each 4-6 m thick, exist near to upper level and at the top of the evaporating sequence. They act as aquifers and keep infiltrated water on top for a long duration, which may result in the failure of roofs or pillars. Two major active seismic ( N30W and N70E ) striking Fault Planes and parallel fracture strands have seismically triggered moderate risk of structural deformation of rock salt bedding sequence. Earthquakes and Floods are two prevailing sources of geohazards in this region—the seismotectonic activity of the Mine Site based on the crossing framework of Kagizman Faults and Igdir Faults. Dominant Hazard Risk sources include; a) Weak mechanical properties of rock salt, gypsum, anhydrite beds-creep. b) Physical discontinuities cutting across the thick parallel layers of Evaporite Mass, c) Intercalated beds of weak cemented or loose sand, clayey sandy sediments. On the other hand, absorbing the effects of salt-gyps parallel bedded deposits on seismic wave amplitudes has a reducing effect on the Rock Mass.Keywords: bedded rock salt, creep, failure mechanism, geotechnical safety
Procedia PDF Downloads 19027853 Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)
Authors: Sharifullah Ahmed
Abstract:
Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis.Keywords: displacement, ground improvement, influence depth, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay
Procedia PDF Downloads 9327852 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs
Authors: Andrej Golowin, Viktor Denk, Axel Riepe
Abstract:
Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.Keywords: combined fatigue, damage tolerance, engine, surface treatment
Procedia PDF Downloads 49627851 Characterization of Kopff Crater Using Remote Sensing Data
Authors: Shreekumari Patel, Prabhjot Kaur, Paras Solanki
Abstract:
Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail.Keywords: crater, mineralogy, moon, radar observations
Procedia PDF Downloads 16027850 Abstract- Mandible Fractures- A Simple Adjunct to Inform Consent
Authors: Emma Carr, Bilal Aslam-Pervez, David Laraway
Abstract:
Litigation against surgeons and hospitals continues to increase in Western countries. While verbal consent is all that is required legally, it has for a long time been considered that written consent offers proof of discussion and interaction between the surgeon and the patient. Inadequate consenting of patients continues in the United Kingdom leaving surgeons and Health Trusts open to litigation. We present a standardised consent form which improves patient autonomy and engagement. The General Medical Council recommends that all material risks relevant to the patient are discussed and recorded prior to undergoing surgery, regardless of how likely they are to occur. Current literature was reviewed to evaluate complications associated with surgical management of mandible fractures. Analysis of risks on 52 consent forms were analysed within the Glasgow OMFS department, leading to a procedure-specific form being designed and implemented. This audit showed that the documentation of risks on consent forms was extremely variable- with uncommon risks not being recorded. Interestingly, not a single consent form was found which highlighted all the risks associated with mandible fractures. Our re-audit data confirms 100% of risks being discussed when a procedure specific form is utilised. Our hope, is to introduce further forms for inclusion on the BAOMS website and peripheral distribution. The forms are quick and easy to print and leave more time for consultation with the patient. Whilst we are under no illusion that the forms may not decrease the incidence of intended litigation, we feel confident that they will decrease the chances of it being successful.Keywords: consent, litigation, mandible fracture, surgery
Procedia PDF Downloads 18827849 Consolidation of Carbonyl Nickel Powders by Hot Pressing
Authors: Ridvan Yamanoglu, Ismail Daoud
Abstract:
In the current study, carbonyl nickel powders were sintered by uniaxial hot pressing technique. Loose starting powders were poured directly into a graphite die with a 15.4 mm inner diameter. Two graphite punches with an outer diameter of 15 mm were inserted into the die; then the powders were sintered at different sintering temperatures, holding times and pressure conditions. The sintered samples were polished and examined by optical microscopy. Hardness and bending behavior of the sintered samples were investigated in order to determine the mechanical properties of the sintered nickel samples. To carried out the friction properties of the produced samples wear tests were studied using a pin on disc tribometer. Load and distance were selected as wear test parameters. The fracture surface of the samples after bending test was also carried out by using scanning electron microscopy.Keywords: nickel powder, sintering, hot press, mechanical properties
Procedia PDF Downloads 168