Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1508

Search results for: fracture locations

1508 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab


The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 173
1507 An Unusual Fracture Pattern: Fracture of the Distal Radius (Colles') along with Fracture of the Ipsilateral Scaphoid & Capitate Bones

Authors: Srikanta Tagore Sarkar, Prasanta Kumar Mandal, Dibakar Roy


The association of a capitate fracture with a scaphoid fracture has been termed as the naviculocapitate syndrome. The existence of some nondisplaced fractures of scaphoid and capitate with or without the fracture of lunate or radius suggests that there is a spectrum of these injuries, and this confuses the terminology. With our case; we report an unusual variety of this naviculocapitate syndrome with distal radial Colles fracture in addition to the nondisplaced fractures of the scaphoid, capitate and the dorsal lip of radial fracture. When we looked at the literature there is no another Colles fracture reported together with undisplaced scapho-capitate syndrome. The coronal and sagittal images that obtained from the MDCT (Multidetector computed tomography) is useful and effective imaging modality to diagnose complex wrist fractures with more details that are not detected in X-rays.

Keywords: scaphoid, capitate, Colles’ fracture, syndrome, MDCT, unusual

Procedia PDF Downloads 295
1506 Micro-CT Assessment of Fracture Healing in Androgen-Deficient Osteoporosis Model

Authors: Ahmad N. Shuid, Azri Jalil, Sabarul A. Mokhtar, Mohd F. Khamis, Norliza Muhammad


Micro-CT provides a 3-D image of fracture callus, which can be used to calculate quantitative parameters. In this study, micro-CT was used to assess the fracture healing of orchidectomised rats, an androgen-deficient osteoporosis model. The effect of testosterone (hormone replacement) on fracture healing was also assessed with micro-CT. The rats were grouped into orchidectomised-control (ORX), sham-operated (SHAM), and orchidectomised; and injected with testosterone intramuscularly once weekly (TEN). Treatment duration was six weeks. The fracture was induced and fixed with plates and screws in the right tibia of all the rats. An in vitro micro-CT was used to scan the fracture callus area which consisted of 100 axial slices above and below fracture line. The analysis has shown that micro-CT was able to detect a significant difference in the fracture healing rate of ORX and TEN groups. In conclusion, micro-CT can be used to assess fracture healing in androgen-deficient osteoporosis. This imaging tool can be used to test agents that influence fracture healing in the androgen-deficient model.

Keywords: androgen, fracture, orchidectomy, osteoporosis

Procedia PDF Downloads 422
1505 Fracture Dislocation of Upper Sacrum in an Adolescent: Case Report and Review of Literature

Authors: S. Alireza Mirghasemi, Narges Rahimi Gabaran


Although sacral fractures in children are rare due to the fact that the occurrence of pelvic fracture is not common in childhood. Sacral fractures present a high risk of neurological damage. This kind of fracture is often missed because the routine pelvic X-rays imaging scarcely show this fracture. Also, the treatment is controversial, and it ranges from fine reduction to conservative treatments without any try to reduce the dislocation. In this article, a case of fracture dislocation of S1 and S2 along with a suggested diagnostic test and treatment based on similar cases are presented. The case investigates a 14-year-old boy who entered the hospital one week after a car accident that knocked him to the ground in crawling position and a rack fell down on his body. Pain and tenderness in the sacral region and a fracture in the left leg were notable--we detected incomplete bilateral palsy of L5, S1 and S2 roots. In radiographs of the spine fracture dislocation of S1, the sacral fracture was seen. The treatment included a skeletal traction with a halo over the patient’s head and two femoral pins. After one week, another surgery was performed in order to stabilize and reduce the fracture, and we employed a posterior approach with CD and a pedicular screw. After two years of follow-up, the fracture is completely cured without any loss of reduction.

Keywords: adolescent, fracture in adolescent, fracture dislocation, sacrum

Procedia PDF Downloads 209
1504 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks

Authors: Guoyang Fu, Wei Yang, Chun-Qing Li


The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.

Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity

Procedia PDF Downloads 153
1503 Socio-Economic Problems in Treatment of Non-Union Both Bones Fracture of the Leg: A Retrospective Study

Authors: Rajendra Kumar Kanojia


Treatment of fracture both bones of leg following trauma is done intially at nearby primary health care center.primary management for shock,pain,control of bleeding,plaster application. These are treated for primay fixation of fracture, debridment of wound. Then, they were refered to tertiary care where they were again and planned for further treatment. This leads to loss of lot of time, money, job, etc.

Keywords: fracture both bones leg, non-union, ilizarov, cost

Procedia PDF Downloads 473
1502 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo


Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 437
1501 Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades

Authors: Ennouri Triki, Toan Vu-Khanh


Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero.

Keywords: elastomer, energy, fracture, friction, pointed blades

Procedia PDF Downloads 214
1500 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan


A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 203
1499 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time

Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent


The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.

Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point

Procedia PDF Downloads 331
1498 Micro-CT Assessment of Fracture Healing with Targeted Delivery of Tocotrienol in Osteoporosis Model

Authors: Ahmad Nazrun Shuid, Isa Naina Mohamed, Nurul Izzah Ibrahim, Norazlina Mohamed


Studies have shown that oral tocotrienol, a potent vitamin E, promoted fracture healing of osteoporotic bone. In this study, tocotrienol was combined with a polymer carrier (PLGA), and injected to the fracture site. The slow and constant release of tocotrienol particles would promote fracture healing of post-menopausal osteoporosis rat model. Fracture healing was assessed using micro-CT. Twenty-four Sprague-Dawley rats were ovariectomised or sham-operated and the left tibiae were fractured and fixed with plate and screws. The fractures were created at the upper third of the left tibiae. The rats were divided into 3 groups: sham-operated (SO), ovariectomised-control (OVxC) and PLGA-incorporated tocotrienol treatment (OVx + TT) groups. After 4 weeks, the OVx + TT group showed significantly better callus fracture healing than the OVxC group. In conclusion, tocotrienol-incorporated PLGA was able to promote fracture healing of osteoporotic bone.

Keywords: osteoporosis, micro-CT, tocotrienol, PLGA, fracture

Procedia PDF Downloads 530
1497 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi


Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks

Procedia PDF Downloads 206
1496 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy

Authors: Tao Yang, Yongli Zhao


Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.

Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking

Procedia PDF Downloads 102
1495 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan


Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: hotforging, engine valve, fracture, tooling

Procedia PDF Downloads 197
1494 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral

Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi


The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.

Keywords: j-integral, critical-j, damage, fracture toughness

Procedia PDF Downloads 285
1493 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid


In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 86
1492 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon


Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 267
1491 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen


The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: energy minimization, fracture, graphene, molecular mechanics

Procedia PDF Downloads 311
1490 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal


Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 299
1489 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process

Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka


Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.

Keywords: ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel

Procedia PDF Downloads 369
1488 A Technique to Plan Application of Buttress Plate in the Medial Tibial Plateau Using the Preoperative CT Scan

Authors: P. Panwalkar, K. Veravalli , R. Gwynn, M. Tofighi, R. Clement, A. Mofidi


When operating on tibial plateau fracture especially medial tibial plateau, it has regularly been said, “where do I put my thumb to reduce the fracture”. This refers to the ideal placement of the buttress device to hold the fracture till union. The aim of this study was to see if one can identify this sweet spot using a CT scan. Methods: Forty-fivetibial plateau fractures with medial plateau involvement were identified and included in the study. The preoperative CT scans were analysed, and the medial plateau involvement pattern was classified based on modified radiological classification by Yukata et-al of stress fracture of medial tibial plateau fracture. The involvement of part of plateau was compared with the position of buttress plate position, which was classified as medial posteromedial or both. Presence and position of the buttress was compared with ability to achieve and hold the reduction of the fracture till union. Results: Thirteen fractures were type-1 fracture, 18 fractures were type-2 fracture, and 11 fractures were type-3 fracture. Sixteen fractures were buttressed correctly according to the potential deformity, and twenty-six fractures were not buttressed, and three fractures were partly buttressed correctly. No fracture was over butressed! When the fracture was buttressed correctly, the rate of the malunion was 0%. When fracture was partly buttressed, 33% were anatomically united, and 66% were united in the plane of buttress. When buttress was not used, 14 were malunited, one malunited in one of the two planes of deformity, and twelve anatomically healed (of which 9 were non displaced!). Buttressing resulted in statistically significant lower mal-union rate (2=7.8 p=0.0052) Conclusion: The classification based on the involvement of medial condyle can identify the placement of buttress plate in the tibial plateau. The correct placement of the buttress plate results in predictablysatisfactory union. There may be a correlation between the injury shape of the tibial plateau and the fracture type.

Keywords: knee, tibial plateau, trauma, CT scan, surgery

Procedia PDF Downloads 44
1487 Improval of Fracture Healing of Osteoporotic Bone by Lovastatin-Incorporated Poly-(DL-Lactide)

Authors: Nurul Izzah Ibrahim, Isa Naina Mohamed, Norazlina Mohamed, Ahmad Nazrun Shuid


Osteoporosis disease delays fracture healing. Statins have shown potential for osteoporosis and to promote fracture healing. The effects of statin can be further potentiated by combining it with a carrier known as poly-(DL-lactide), which would provide persistent release of statin to the fracture site. This study was designed to investigate the effects of direct injection of poly-(DL-lactide)-incorporated lovastatin on fracture healing of postmenopausal osteoporosis rat model. Twenty-four Sprague-Dawley female rats were divided into 3 groups: sham-operated (SO), ovariectomized-control rats (OVxC) and poly-(DL-lactide)-incorporated lovastatin (OVx+Lov) groups. The OVx+Lov group was given a single injection of 750 µg/kg lovastatin particles incorporated with poly-(DL-lactide). After 4 weeks, the fractured tibiae were dissected out for biomechanical assessments of the callus. The OVx+Lov group showed significantly better callus strength than the OVxC group (p<0.05). In conclusion, a single injection of lovastatin-incorporated poly-(DL-lactide) was able to promote better fracture healing of osteoporotic bone.

Keywords: statins, fracture healing, osteoporosis, poly-(DL-lactide)

Procedia PDF Downloads 410
1486 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi


In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: acoustic emission, dual phase steels, deformation, failure, fracture

Procedia PDF Downloads 323
1485 Influence of Multi-Walled Carbon Nanotube on Interface Fracture of Sandwich Composite

Authors: Alak Kumar Patra, Nilanjan Mitra


Interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT has been investigated through experimental methods. Results demonstrate an improvement in interface fracture toughness values (GC) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum assisted resin transfer method (VARTM) used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results are supported by high resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation.

Keywords: carbon nanotube, foam, glass-epoxy, interfacial fracture, sandwich composite

Procedia PDF Downloads 352
1484 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni


The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 156
1483 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero


This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 56
1482 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor

Authors: Michael Bach


Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.

Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength

Procedia PDF Downloads 100
1481 Insufficiency Fracture of Femoral Head in Patients Treated With Intramedullary Nailing for Proximal Femur Fracture

Authors: Jai Hyung Park, Eugene Kim, Jin Hun Park, Min Joon Oh


Introduction: Subchondral insufficiency fracture of the femoral head (SIF) is a rare complication; however, it has been recognized to cause femoral head collapse. Subchondral insufficiency fracture (SIF) is caused by normal or physiological stress without any trauma. It has been reported in osteoporotic patients after the fixation of the proximal femur with an Intramedullary nail. Case presentation: We reported 5 cases with SIF of the femoral head after proximal femur fracture fixation with Intra-medullary nail. All patients had osteoporosis as an underlying disease. Good reduction was achieved in all 5 patients. SIF was found from about 3 months to 4 years after the initial operation, and all the fractures were solidly united at the final diagnosis. We investigated retrospectively the feature of those cases and several factors that affected the occurrence of SIF. Discussion: There are a few discussions regarding the SIF of the femoral head. These discussions may include the predisposing risk factors, how to diagnose the SIF in osteoporotic patients, and the peri-operative factors to prevent SIF. Conclusion: Subchondral insufficiency fracture of the femoral head is a considerable complication after the internal fixation of the proximal femur. There are several factors that can be modified. If they could be controlled in the peri-operative period, SIF could be prevented or handled in advance. Other options related to arthroplasty can be considered in old osteoporotic patients.

Keywords: insufficiency fracture of femoral head, intra-medullary nail, osteoporosis, proximal femur fracture

Procedia PDF Downloads 48
1480 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Hashim, Aseel Abdullah


In this work, the fracture toughness of new green composite based on bio-PMMA resin reinforced with randomly short corn natural fiber of constant weight fraction by 10% wt was investigated. The corn fiber surface was modified by mercerization treatment with two different concentrations of sodium hydroxide (3, and 5% NaOH) for 1.5 and 3 hours respectively. The effect of mercerization treatment on the fracture behavior of the green composites was analyzed by FTIR spectra. NaOH concentration of 3% for 1.5 hrs. That was used for corn fiber green composite should the highest improvement in terms of plane strain fracture toughness KIC which increased by 62 % compared to untreated fiber composite material. On the other hand, increased both concentrations of alkali solution to 5% NaOH and time of soaking to 3 hrs. reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, bio-PMMA

Procedia PDF Downloads 331
1479 Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture

Authors: Kunwar Mrityunjai Sharma, Trilok Nath Singh


The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care.

Keywords: fracture flow, nonlinear flow, cubic law, Navier-stokes equation

Procedia PDF Downloads 13