Search results for: feature combination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4566

Search results for: feature combination

4206 Comparative Study on Effectiveness and Safety of Oral Antidiabetic Medications in Patients with Type 2 Diabetes Mellitus in a Tertiary Care Hospital of Bangalore, South India - A Prospective Cohort Study

Authors: Shobha Rani R. Hiremath, Keerthana R., Madhuvan H. S.

Abstract:

BACKGROUND: Type 2 Diabetes is a chronic health condition where the body cannot effectively use the insulin it produces, leading to elevated blood sugar levels It is often associated with lifestyle factors and insulin resistance. Globally, diabetes is on the rise, with urban areas like Bangalore seeing a surge due to lifestyle changes, stress, and dietary habits. To manage diabetes effectively, over 50 medications are available, each serving to regulate blood sugar through different mechanisms. This reflects the complex and individualized nature of diabetes treatment. Given the increase in medications for Type 2 diabetes mellitus, it is important to evaluate their effectiveness and safety so that clinicians can make informed choices while treating their patients. OBJECTIVES: To evaluate the effectiveness of various anti-diabetic medications used in the hospital in Type 2 diabetes patients by monitoring their HbA1c levels. To assess the safety of these medications by monitoring Adverse drug reactions if any. METHODOLOGY Design : Prospective Cohort study, Study period: 8 months, Sample Size: 100 patients, Inclusion Criteria: Patients above 18 years of both genders who were diagnosed with T2DM and who were prescribed oral hypoglycaemic agents. Exclusion Criteria: Diabetic patients with hepatic/renal failure, patients prescribed with insulin /not prescribed with OHAs and patients who were terminally ill, pregnant and lactating patients. Source of Data: Prescriptions, lab reports, ECG reports. Data collection forms were used to collect data which consisted of patient demographic details, drugs prescribed, laboratory investigations such as HbA1C, FBS, PPBS , ECG and any ADRs experienced. Data was collected at baseline, 3 months, and 6 months. It was statistically analyzed using SPSS (version 26) software. RESULTS: Greater number of patients (46%) were in the age group of greater than 61 years. 43 patients had no co-morbidities whereas 51 patients had Hypertension as the co morbidity. Basically 5 Drug combinations were prescribed as follows. Combination 1: Tablet Metformin HCL + Glimepiride (500, 2 mg) : 1-0-1, Combination 2: Tablet Sitagliptin + Metformin HCL (50, 500 mg) : 1-0-1, Combination 3: Tablet Vildagliptin + Metformin HCL (50, 500 mg): 1-0-1, Combination 4: Tablet Voglibose+ Glimepiride+ Metformin HCL (0.2 ,2 ,500mg): : 1-0-1, Combination 5: Tablet Voglibose+ Glimepiride+ Metformin HCL (0.2, 2 ,500mg): : 1-0-1 and T. Sitagliptin +Metformin HCL (50, 500 mg): 0-1-0. Combination 5 (Voglibose, Glimepiride, Metformin, Sitagliptin) was most effective in reducing HbA1c levels, showing a significant decrease (-0.00682, p = 0.001), followed by Combinations 4 and 3. However, Combination 5 also had the highest incidence of gastrointestinal side effects (72.7%) and ECG abnormalities (27.3%). Combination 1 (Metformin + Glimepiride) had the highest occurrence of hypoglycemia due to Glimepiride's insulin-stimulating effects. Weight loss was most notable in Combination 5, affecting 36.36% of patients. CONCLUSION: The enhanced effectiveness of Combinations 3, 4, and 5 suggests that a multi-drug approach that incorporates different mechanisms of action is more effective in managing HbA1c levels in patients with diabetes. Adverse effect profiles should be considered for personalized treatment strategies.

Keywords: type 2 diabetes, safety, oral anti diabetic medications, effectiveness

Procedia PDF Downloads 9
4205 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials

Authors: Olusegun A. Afolabi, Ndivhuwo Ndou

Abstract:

Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.

Keywords: composite material, density, filler, matrix, percentage weight, volume fraction

Procedia PDF Downloads 67
4204 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 97
4203 Diversity Indices as a Tool for Evaluating Quality of Water Ways

Authors: Khadra Ahmed, Khaled Kheireldin

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: planktons, diversity indices, water quality index, water ways

Procedia PDF Downloads 518
4202 A Combination of Mesenchymal Stem Cells and Low-Intensity Ultrasound for Knee Meniscus Regeneration: A Preliminary Study

Authors: Mohammad Nasb, Muhammad Rehan, Chen Hong

Abstract:

Background Meniscus defects critically alter knee function and lead to degenerative changes. Regenerative medicine applications including stem cell transplantation have showed a promising efficacy in finding alternatives to overcome traditional treatment limitations. However, stem cell therapy remains limited due to the substantially reduced viability and inhibitory microenvironment. Since tissue growth and repair are under the control of biochemical and mechanical signals, several approaches have recently been investigated (e.g., low intensity pulsed ultrasound [LIPUS]) to promote the regeneration process. This study employed LIPUS to improve growth and osteogenic differentiation of mesenchymal stem cells derived from human embryonic stem cells to improve the regeneration of meniscus tissue. Methodology: The Mesenchymal stromal cells (MSCs) were transplanted into the epicenter of the injured meniscus in rabbits, which were randomized into two main groups: a treatment group (n=32 New Zealand rabbits) including 4 subgroups of 8 rabbits in each subgroup (LIPUS treatment, MSC treatment, LIPUS with MSC and control), and a second group (n=9) to track implanted cells and their progeny using green fluorescence protein (GFP). GFP consists of the MSC and LIPUS-MSC combination subgroups. Rabbits were then subjected to histological, immunohistochemistry, and MRI assessment. Results: The quantity of the newly regenerated tissue in the combination treatment group that had Ultrasound irradiation after mesenchymal stem cells were better at all end points. Likewise, Tissue quality scores were also greater in knees treated with both approaches compared with controls and single treatment at all end points, achieving significance at twelve and twenty-four weeks [p < 0.05], and [p = 0.008] at twelve weeks. Differentiation into type-I and II collagen-expressing cells were higher in the combination group at up to twenty-four weeks. Conclusions: the combination of mesenchymal stem cells and LIPUS showed greater adhering to the sites of meniscus injury, differentiate into cells resembling meniscal fibrochondrocytes, and improve both quality and quantity of meniscal regeneration.

Keywords: stem cells, regenerative medicine, osteoarthritis, knee

Procedia PDF Downloads 119
4201 Integrated Geophysical Surveys for Sinkhole and Subsidence Vulnerability Assessment, in the West Rand Area of Johannesburg

Authors: Ramoshweu Melvin Sethobya, Emmanuel Chirenje, Mihlali Hobo, Simon Sebothoma

Abstract:

The recent surge in residential infrastructure development around the metropolitan areas of South Africa has necessitated conditions for thorough geotechnical assessments to be conducted prior to site developments to ensure human and infrastructure safety. This paper appraises the success in the application of multi-method geophysical techniques for the delineation of sinkhole vulnerability in a residential landscape. Geophysical techniques ERT, MASW, VES, Magnetics and gravity surveys were conducted to assist in mapping sinkhole vulnerability, using an existing sinkhole as a constraint at Venterspost town, West of Johannesburg city. A combination of different geophysical techniques and results integration from those proved to be useful in the delineation of the lithologic succession around sinkhole locality, and determining the geotechnical characteristics of each layer for its contribution to the development of sinkholes, subsidence and cavities at the vicinity of the site. Study results have also assisted in the determination of the possible depth extension of the currently existing sinkhole and the location of sites where other similar karstic features and sinkholes could form. Results of the ERT, VES and MASW surveys have uncovered dolomitic bedrock at varying depths around the sites, which exhibits high resistivity values in the range 2500-8000ohm.m and corresponding high velocities in the range 1000-2400 m/s. The dolomite layer was found to be overlain by a weathered chert-poor dolomite layer, which has resistivities between the range 250-2400ohm.m, and velocities ranging from 500-600m/s, from which the large sinkhole has been found to collapse/ cave in. A compiled 2.5D high resolution Shear Wave Velocity (Vs) map of the study area was created using 2D profiles of MASW data, offering insights into the prevailing lithological setup conducive for formation various types of karstic features around the site. 3D magnetic models of the site highlighted the regions of possible subsurface interconnections between the currently existing large sinkhole and the other subsidence feature at the site. A number of depth slices were used to detail the conditions near the sinkhole as depth increases. Gravity surveys results mapped the possible formational pathways for development of new karstic features around the site. Combination and correlation of different geophysical techniques proved useful in delineation of the site geotechnical characteristics and mapping the possible depth extend of the currently existing sinkhole.

Keywords: resistivity, magnetics, sinkhole, gravity, karst, delineation, VES

Procedia PDF Downloads 80
4200 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 79
4199 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 200
4198 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 102
4197 Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology

Authors: F. Rahmani, F. Razaghian, A. R. Kashaninia

Abstract:

This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ~72% PAE and output power of > 39 dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5 GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The load- and source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal.

Keywords: power amplifier (PA), high power, class-J and class-E, high efficiency

Procedia PDF Downloads 491
4196 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax

Procedia PDF Downloads 415
4195 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 402
4194 Seismic Evaluation with Shear Walls and Braces for Buildings

Authors: R. S. Malik, S. K. Madan, V. K. Sehgal

Abstract:

Reinforced concrete (RCC) buildings with dual system consisting of shear walls and moment resisting frames or braces and moment resisting frames have been widely used to resist lateral forces during earthquakes. The two dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of the combination of braces and shear walls has not yet been studied therefore has practically no work to refer to. The combination may prove to be more effective in lateral load resistance by employing the peculiar advantages of shear walls and braces simultaneously and may also improve the architectural appearance of structures. This concept has been applied to regular RCC buildings provided with shear walls, braces, and their combinations.

Keywords: dynamic analysis, displacement, pushover analysis, dual structures, storey drift

Procedia PDF Downloads 406
4193 Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter

Authors: Dheyaa Wajid Abbood, Ali Mohammed Tawfeeq Baqer, Eitizaz Awad Jasim

Abstract:

The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used.

Keywords: Marginal water , Toxic matter, Stepped Cascade weir, limestone trickling filter

Procedia PDF Downloads 395
4192 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: flexible job shop scheduling, decision tree, priority rules, case study

Procedia PDF Downloads 357
4191 Nutritional Supplementation in the Management of Childhood/Youth Aggression: A Systematic Review

Authors: Sabrina M. Wang, Rameen Qamar, Fahad Manzar Qureshi, Laura La Chance, Nathan J. Kolla, Barna Konkolÿ Thege

Abstract:

Elevated level of aggressive behaviour in children and youth can lead to impairments in family, social or academic functioning. The aim of the present study was to critically review the evidence on the effectiveness of nutritional supplements in reducing aggression in children and youth. The Cochrane Library, EMBASE, MEDLINE, ProQuest Dissertations & Theses, PsycINFO, and PubMed data bases were searched for relevant studies. Altogether, 22 studies met inclusion criteria; 13 investigated the effect of macronutrients (fatty acids and amino acids), 6 studies investigated the effect of micronutrients (vitamins and minerals), while 3 studies investigated a combination of macro and micronutrients. Out of the 22 studies, 7 reported a beneficial effect of nutritional supplementation (vitamins and minerals, essential fatty acids, or a certain combination of these). Eight studies did not report a significant beneficial effect of nutritional supplementation (essential fatty acids, vitamin D, and L-tryptophan), while 7 studies reported mixed effects (vitamin B6, essential fatty acids alone and in combination with vitamins and minerals, and carnitine). The results overall suggest that there may be a role for broad-range vitamin and mineral supplements in the treatment of aggression in youth and children.

Keywords: aggression, children, youth, nutritional supplementation, micronutrient, macronutrient

Procedia PDF Downloads 193
4190 Effect of Antioxidants Addition in Combination with Milk Re Pasteurization on the Physical, Chemical and Sensory Properties of Condensed Yoghurt

Authors: Mahmoud Abu-Ghoush, Murad Al Holy

Abstract:

Our main goal in this project is to study the causes and finding solutions for both the hydrolytic and the oxidative rancidity that can be produced during condensed yoghurt production. The re pasteurization of the pasteurized milk and the addition of different types of antioxidants (ascorbic acid and propyl gallate) were used to achieve this goal. Chemical, physical, microbial and sensory tests were done to evaluate the product. It was found that there were significant differences between the different treatments and the control regarding the peroxide value. This means that the addition of both types of antioxidants have a positive effect in decreasing the rancidity value. However, it was found that there were some samples have hydrolytic rancidity flavour without any type of oxidative rancidity (low peroxide value). To overcome this problem the re pasteurization step was used to destroy all the vegetative form of microbes. It was found that this treatment was very useful in controlling the rancidity flavour according to the sensory evaluation of the condensed yoghurt products for several batches. The best condensed yoghurt which contains 0.25% ascorbic acid exhibited the highest sensory properties values. Also, it has the ability in lowering the oxidative rancidity in the combination with the re pasteurization step of the pasteurized milk. This suggests that a higher quality and stable condensed yoghurt can be obtained upon using this combination. These results may help producers in selecting the best treatment methods to overcome the rancidity flavor in this type of condensed yoghurt.

Keywords: antioxidants, condensed yoghurt, repasturization, condensed milk

Procedia PDF Downloads 286
4189 Production and Evaluation of Jam Made from Pineapple (Ananas comosus) and Grape (Vitis vinifera)

Authors: Z. O. Apotiola, J. F. Fashakin

Abstract:

This project studied the production and evaluation of jam produced from pineapple and grape at different level of ratio (90:10, 80:20, 70:30, 60:40, 50:50, and 100%). The proximate and sensory properties were determined using standard methods. The (GDZ) was the highest for protein, moisture, fat and ash, (KFJ) was the highest for carbohydrate. There were significant differences (p<0.05) in samples (PAB, GDZ, BEN) for moisture. Also, there were significant differences (p<0.05) in samples (PAB, BBL, GDZ, KFJ) for protein. There were significant differences (p<0.05) in samples (PAB, BBL, BEN) for carbohydrate. Also, there were significant differences (p<0.05) in samples (PAB, BBL, QCM, GDZ, BEN) for fat and there were significant differences (p<0.05) in samples (PAB, BBL, GDZ) for ash. (KFJ) was the highest for pH, (BBL and QCM) was the highest for Vitamin C; (GDZ) was the highest for titratable acidity. For sensory properties, for aroma, colour, flavour, and overall acceptability were tested using panellists; the result showed that (KFJ) had the highest for all samples. From the results of chemical and sensory characteristics sample BBL was the best combination.

Keywords: chemical, characteristic, combination, titratable, sensory, significant

Procedia PDF Downloads 275
4188 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
4187 An Improved Tracking Approach Using Particle Filter and Background Subtraction

Authors: Amir Mukhtar, Dr. Likun Xia

Abstract:

An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.

Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination

Procedia PDF Downloads 379
4186 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 200
4185 Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana

Authors: Abdullah Ansari, Sinika Rambaran, Sirpaul Jaikishun

Abstract:

Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata.

Keywords: vermiwash, earthworms, soil, bacteria, alternaria alternata, antifungal, antibacterial

Procedia PDF Downloads 252
4184 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 6
4183 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
4182 Toxicities associated with EBRT and Brachytherapy for Intermediate and High Risk Prostate Cancer, Correlated with Intra-operative Dosing

Authors: Rebecca Dunne, Cormac Small, Geraldine O'Boyle, Nazir Ibrahim, Anisha

Abstract:

Prostate cancer is the most common cancer among men, excluding non-melanoma skin cancers. It is estimated that approximately 12% of men will develop prostate cancer during their lifetime. Patients with intermediate, high risk, and very-high risk prostate cancer often undergo a combination of radiation treatments. These treatments include external beam radiotherapy with a low-dose rate or high-dose rate brachytherapy boost, often with concomitant androgen deprivation therapy. The literature on follow-up of patients that receive brachytherapy is scarce, particularly follow-up of patients that undergo high-dose rate brachytherapy. This retrospective study aims to investigate the biochemical failure and toxicities associated with triple therapy and external beam radiotherapy given in combination with brachytherapy. Reported toxicities and prostate specific antigen (PSA) were retrospectively evaluated in eighty patients that previously underwent external beam radiotherapy with a low-dose rate or high dose-rate brachytherapy boost. The severity of toxicities were correlated with intra-operative dosing during brachytherapy on ultrasound and CT scan. The results of this study will provide further information for clinicians and patients when considering treatment options.

Keywords: toxicities, combination, brachytherapy, intra-operative dosing, biochemical failure

Procedia PDF Downloads 242
4181 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
4180 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 412
4179 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
4178 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity

Procedia PDF Downloads 257
4177 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 531