Search results for: eigenvalue decomposition
323 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 136322 A Hybrid Watermarking Model Based on Frequency of Occurrence
Authors: Hamza A. A. Al-Sewadi, Adnan H. M. Al-Helali, Samaa A. K. Khamis
Abstract:
Ownership proofs of multimedia such as text, image, audio or video files can be achieved by the burial of watermark is them. It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications would be in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.Keywords: authentication, copyright protection, information hiding, ownership, watermarking
Procedia PDF Downloads 565321 Reduce the Fire Hazards of Epoxy Resin by a Zinc Stannate and Graphene Hybrids
Authors: Haibo Sheng, Yuan Hu
Abstract:
Spinel structure Zinc stannate (Zn2SnO4, ZS)/Graphene was successfully synthesized by a simple in situ hydrothermal route. Morphological study and structure analysis confirmed the homogenously loading of ZS on the graphene sheets. Then, the resulted ZS/graphene hybrids were incorporated into epoxy resin to form EP/ZS/graphene composites by a solvent dispersion method. Improved thermal stability was investigated by Thermogravimetric Analysis (TGA). Cone calorimeter result showed low peak heat release rate (PHRR). Toxical gases release during combustion was evaluated by a facile device organized in our lab. The results showed that the release of NOx, HCN decrease of about 55%. Also, TG-IR technology was used to investigate the gas release during the EP decomposition process. The CO release had decreased about 80%.The EP/G/ZS showed lowest hazards during combustion (including flame retardancy, thermal stability, lower toxical gases release and so on) than pure EP.Keywords: fire hazards, zinc stannate, epoxy resin, toxical gas hazards
Procedia PDF Downloads 182320 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis
Procedia PDF Downloads 406319 Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst
Authors: S. Totong, P. Daorattanachai, N. Laosiripojana
Abstract:
Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO₂ was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO₂ catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO₂ such as Cu/SiO₂ and Ni/SiO₂ increased the catalyst activity in terms of phenolic products yield.Keywords: alkaline lignin, catalytic, depolymerization, fumed SiO₂, phenolic-based chemicals
Procedia PDF Downloads 246318 Frequency of Occurrence Hybrid Watermarking Scheme
Authors: Hamza A. Ali, Adnan H. M. Al-Helali
Abstract:
Generally, a watermark is information that identifies the ownership of multimedia (text, image, audio or video files). It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications are done according to a secret key in a descriptive model that would be either in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.Keywords: watermarking, ownership, copyright protection, steganography, information hiding, authentication
Procedia PDF Downloads 368317 Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass
Authors: Karen E. Supan
Abstract:
Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature.Keywords: biomass, switchgrass, thermal degradation, thermogravimetric analysis
Procedia PDF Downloads 116316 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem
Authors: Kyugneun Lee, Ikjin Lee
Abstract:
Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis
Procedia PDF Downloads 314315 Decomposing the Socio-Economic Inequalities in Utilization of Antenatal Care in South Asian Countries: Insight from Demographic and Health Survey
Authors: Jeetendra Yadav, Geetha Menon, Anita Pal, Rajkumar Verma
Abstract:
Even after encouraging maternal and child wellness programs at worldwide level, lower-middle income nations are not reached the goal set by the UN yet. This study quantified the contribution of socioeconomic determinants of inequality to the utilization of Antenatal Care in South Asian Countries. This study used data from Demographic Health Survey (DHS) of the selected countries were used, and Oaxaca decomposing were applied for socioeconomic inequalities in utilization of antenatal care. Finding from the multivariate analysis shows that mother’s age at the time of birth, birth order and interval, mother’s education, mass media exposure and economic status were significant determinants of the utilization of antenatal care services in South Asian countries. Considering, concentration index curve, the line of equity was greatest in Pakistan which followed by India and Nepal.Keywords: antenatal care, decomposition, inequalities, South Asian countries
Procedia PDF Downloads 183314 Evaluation of the Fire Propagation Characteristics of Thermoplastics
Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae
Abstract:
Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)
Procedia PDF Downloads 202313 Study of Secondary Metabolites of Sargassum Algae: Anticorrosive and Antibacterial Activities
Authors: Prescilla Lambert, Christophe Roos, Mounim Lebrini
Abstract:
For several years, the Caribbean islands and West Africa have had to deal with the massive arrival of the brown seaweed Sargassum. Overall, this macroalgae, which constitutes a habitat for a great diversity of marine organisms, is also an additional stress factor for the marine environment (e.g., coral reefs). In addition, the accumulation followed by the significant decomposition of the Sargassum spp. biomass on the coast leads to the release of toxic gases (H₂S and NH₃), which calls into question the functioning of the economic, health and tourist life of the island and the other interested territories. Originally, these algae are formed by the eutrophication of the oceans accentuated by global warming. Unfortunately, scientists predict a significant recurrence of these Sargassum strandings for years to come. It is therefore more than necessary to find solutions by putting in place a sustainable management plan for this phenomenon. Martinique, a small island in the Caribbean arc, is one of the many areas impacted by Sargassum seaweed strandings. Since 2011, there has been a constant increase in the degradation of the materials present in this region, largely due to toxic/corrosive gases released by the algae decomposition. In order to protect the structures and the vulnerable building materials while limiting the use of synthetic/petroleum based molecules as much as possible, research is being conducted on molecules of natural origin. Thus, thanks to the chemical composition, which comprise molecules with interesting properties, algae such as Sargassum could potentially help to solve many issues. Therefore, this study focuses on the green extraction and characterization of molecules from the species Sargassum fluitans and Sargassum natans present in Martinique. The secondary metabolites found in these extracts showed variability in yield rates due to local climatic conditions. The tests carried out shed light on the anticorrosive and antibacterial potential of the algae. These extracts can thus be described as natural inhibitors. The effect of variation in inhibitor concentrations was tested in electrochemistry using electrochemical impedance spectroscopy and polarization curves. The analysis of electrochemical results obtained by direct immersion in the extracts and self-assembled molecular layers (SAMs) for Sargassum fluitans III, Sargassum natans I and VIII species was conclusive in acid and alkaline environments. The excellent results obtained reveal an inhibitory efficacy of 88% at 50mg/L for the crude extract of Sargassum fluitans III and efficacies greater than 97% for the chemical families of Sargassum fluitans III. Similarly, microbiological tests also suggest a bactericidal character. Results for Sargassum fluitans III crude extract show a minimum inhibitory concentration (MIC) of 0.005 mg/mL on Gram-negative bacteria and a MIC greater than 0.6 mg/mL on Gram-positive bacteria. These results make it possible to consider the management of local and international issues while valuing a biomass rich in biodegradable molecules. The next step in this study will therefore be the evaluation of the toxicity of Sargassum spp..Keywords: Sargassum, secondary metabolites, anticorrosive, antibacterial, natural inhibitors
Procedia PDF Downloads 72312 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution
Authors: T. Zitoun, M. Bouhadef
Abstract:
When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.Keywords: analytical solution, free-surface wave, hydraulic channel, inviscid fluid
Procedia PDF Downloads 197311 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 416310 Hardware Implementation and Real-time Experimental Validation of a Direction of Arrival Estimation Algorithm
Authors: Nizar Tayem, AbuMuhammad Moinuddeen, Ahmed A. Hussain, Redha M. Radaydeh
Abstract:
This research paper introduces an approach for estimating the direction of arrival (DOA) of multiple RF noncoherent sources in a uniform linear array (ULA). The proposed method utilizes a Capon-like estimation algorithm and incorporates LU decomposition to enhance the accuracy of DOA estimation while significantly reducing computational complexity compared to existing methods like the Capon method. Notably, the proposed method does not require prior knowledge of the number of sources. To validate its effectiveness, the proposed method undergoes validation through both software simulations and practical experimentation on a prototype testbed constructed using a software-defined radio (SDR) platform and GNU Radio software. The results obtained from MATLAB simulations and real-time experiments provide compelling evidence of the proposed method's efficacy.Keywords: DOA estimation, real-time validation, software defined radio, computational complexity, Capon's method, GNU radio
Procedia PDF Downloads 74309 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm
Procedia PDF Downloads 412308 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds
Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai
Abstract:
In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.Keywords: antioxidant, stearate, carbon black, polyethylene
Procedia PDF Downloads 363307 Analysis of the Impact of Suez Canal on the Robustness of Global Shipping Networks
Abstract:
The Suez Canal plays an important role in global shipping networks and is one of the most frequently used waterways in the world. The 2021 canal obstruction by ship Ever Given in March 2021, however, completed blocked the Suez Canal for a week and caused significant disruption to world trade. Therefore, it is very important to quantitatively analyze the impact of the accident on the robustness of the global shipping network. However, the current research on maritime transportation networks is usually limited to local or small-scale networks in a certain region. Based on the complex network theory, this study establishes a global shipping complex network covering 2713 nodes and 137830 edges by using the real trajectory data of the global marine transport ship automatic identification system in 2018. At the same time, two attack modes, deliberate (Suez Canal Blocking) and random, are defined to calculate the changes in network node degree, eccentricity, clustering coefficient, network density, network isolated nodes, betweenness centrality, and closeness centrality under the two attack modes, and quantitatively analyze the actual impact of Suez Canal Blocking on the robustness of global shipping network. The results of the network robustness analysis show that Suez Canal blocking was more destructive to the shipping network than random attacks of the same scale. The network connectivity and accessibility decreased significantly, and the decline decreased with the distance between the port and the canal, showing the phenomenon of distance attenuation. This study further analyzes the impact of the blocking of the Suez Canal on Chinese ports and finds that the blocking of the Suez Canal significantly interferes withChina's shipping network and seriously affects China's normal trade activities. Finally, the impact of the global supply chain is analyzed, and it is found that blocking the canal will seriously damage the normal operation of the global supply chain.Keywords: global shipping networks, ship AIS trajectory data, main channel, complex network, eigenvalue change
Procedia PDF Downloads 182306 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater
Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić
Abstract:
Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide
Procedia PDF Downloads 266305 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 631304 The Effect of Calcining Temperature on Photocatalytic Activity of Porous ZnO Architecture
Authors: M. Masar, P. Janota, J. Sedlak, M. Machovsky, I. Kuritka
Abstract:
Zinc oxide (ZnO) nano crystals assembled porous architecture was prepared by thermal decomposition of zinc oxalate precursor at various temperatures ranging from 400-900°C. The effect of calcining temperature on structure and morphology was examined by scanning electron microscopy (SEM), X-ray diffractometry, thermogravimetry, and BET adsorption analysis. The porous nano crystalline ZnO morphology was developed due to the release of volatile precursor products, while the overall shape of ZnO micro crystals was retained as a legacy of the precursor. The average crystallite size increased with increasing temperature of calcination from approximately 21 nm to 79 nm, while the specific surface area decreased from 30 to 1.7 m2g-1. The photo catalytic performance of prepared ZnO powders was evaluated by degradation of methyl violet 2B, a model compound. The significantly highest photo catalytic activity was achieved with powder calcined at 500°C. This may be attributed to the sufficiently well-developed crystalline arrangement, while the specific surface area is still high enough.Keywords: ZnO, porous structure, photodegradation, methyl violet
Procedia PDF Downloads 408303 Wavelet Based Signal Processing for Fault Location in Airplane Cable
Authors: Reza Rezaeipour Honarmandzad
Abstract:
Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal
Procedia PDF Downloads 524302 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 117301 Microstructure Characterization on Silicon Carbide Formation from Natural Wood
Authors: Noor Leha Abdul Rahman, Koay Mei Hyie, Anizah Kalam, Husna Elias, Teng Wang Dung
Abstract:
Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur.Keywords: density, SEM, silicon carbide, XRD
Procedia PDF Downloads 424300 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate
Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco
Abstract:
The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.Keywords: environmental impact, geotechnics, PET, silty clay soil
Procedia PDF Downloads 237299 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 165298 Use of Natural Fibers in Landfill Leachate Treatment
Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella
Abstract:
Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes
Procedia PDF Downloads 357297 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 435296 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 160295 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange
Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas
Abstract:
Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis
Procedia PDF Downloads 66294 Hyperelastic Formulation for Orthotropic Materials
Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann
Abstract:
In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.Keywords: finite strain, hyperelastic, invariants, orthotropic
Procedia PDF Downloads 446