Search results for: dredge soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2997

Search results for: dredge soil

2637 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia

Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri

Abstract:

Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.

Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model

Procedia PDF Downloads 313
2636 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 151
2635 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 80
2634 Seismic Performance of Isolated Bridge Configurations with Soil Structure Interaction

Authors: Davide Forcellini

Abstract:

The most recent development of earthquake engineering is based on concept of design consisting in prescribed performance rather than the more traditional prescriptive approaches. The paper aims to assess the effects of isolation devices and soil structure interaction on a benchmark bridge adopting a Performance-Based Earthquake Engineering methodology. Several isolated configurations of abutments and pier connections are compared performing the most representative isolation devices. Isolation systems suitability depends on many factors, mainly connected with ground effects. In this regard, the second purpose of this paper is to assess the effects of soil-structure interaction (SSI) on the studied bridge configurations. Contributions of isolation technique and soil structure interaction are assessed evaluating the resistance effects applied to Peak Ground Acceleration (PGA) levels in terms of cost and time repair quantities.

Keywords: base isolation, bridge, earthquake engineering, non linearity, PBEE methodology, seismic assessment, soil structure interaction

Procedia PDF Downloads 429
2633 Soil Enzyme Activity as Influenced by Post-emergence Herbicides Applied in Soybean [Glycine max (L.) Merrill]

Authors: Uditi Dhakad, Baldev Ram, Chaman K. Jadon, R. K. Yadav, D. L. Yadav, Pratap Singh, Shalini Meena

Abstract:

A field experiment was conducted during Kharif 2021 at Agricultural Research Station, Kota, to evaluate the effect of different post-emergence herbicides applied to soybean [Glycine max (L.) Merrill] on soil enzymes activity viz. dehydrogenase, phosphatase, and urease. The soil of the experimental site was clay loam (vertisols) in texture and slightly alkaline in reaction with 7.7 pH. The soil was low in organic carbon (0.49%), medium in available nitrogen (210 kg/ha), phosphorus (23.5 P2O5 kg/ha), and high in potassium (400 K2O kg/ha) status. The results elucidated that no significant adverse effect on soil dehydrogenase, urease, and phosphatase activity was determined with the application of post-emergence herbicides over the untreated control. Two hands weeding at 20 and 40 DAS registered maximum dehydrogenase enzyme activity (0.329 μgTPF/g soil/d) closely followed by herbicides mixtures and sole herbicide while pre-emergence application of pendimethalin + imazethapyr 960 g a.i./ha and pendimethalin 1.0 kg a.i./ha significantly reduced dehydrogenase enzyme activity compared to control. Urease enzyme activity was not much affected under different weed control treatments and weedy checks. The treatments were found statistically non-significant, and values ranged between 1.16-1.25 μgNH4N/g soil/d. Phosphatase enzyme activity was also not influenced significantly due to various weed control treatments. Though maximum phosphatase enzyme activity (30.17 μgpnp/g soil/hr) was observed under two-hand weeding, followed by fomesafen + fluazifop-p-butyl 220 g a.i./ha. Herbicidal weed control measures did not influence the total bacteria, fungi, and actinomycetes population.

Keywords: dehydrogenase, phosphatase, post-emergence, soil enzymes, urease.

Procedia PDF Downloads 105
2632 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests

Authors: Monalisha Nayak, T. G. Sitharam

Abstract:

Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.

Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)

Procedia PDF Downloads 232
2631 Evaluating the Topsoil and Subsoil Physical Quality Using Relative Bulk Density in Urmia Plain

Authors: Hossein Asgarzadeh, Ayoub Osmani, Farrokh Asadzadeh, Mohammad Reza Mosaddeghi

Abstract:

This study was conducted to evaluate the topsoil and subsoil physical quality using relative bulk density (RBD) in Urmia plain in Iran. Undisturbed samples were collected from two layers (topsoil and subsoil) of thirty agricultural soils. Categories of 0.72 ≥ RBD (low degree of compactness), 0.82 > RBD > 0.72 (moderate/optimum degree of compactness), and RBD ≥ 0.82 (high degree of compactness) were used to evaluate soil physical quality (SPQ). Two topsoils had a low degree of compactness, fourteen topsoils had an optimum degree of compactness, and the rest (i.e., fourteen topsoils) had a high degree of compactness. Only one subsoil had an optimum degree of compactness, and twenty-eight subsoils (i.e., 93%) had a high degree of compactness, indicating poor SPQ of the subsoil layer in the studied region. It seems that conventional tillage in the past decades destroyed the pore system in the majority of studied subsoils. The high degree of compactness would reduce soil aeration and increase soil penetration resistance which could restrict root and plant growth. Conversely, a low degree of soil compactness is expected to reduce the root-soil contact.

Keywords: compactness, relative bulk density, soil physical quality

Procedia PDF Downloads 123
2630 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.

Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering

Procedia PDF Downloads 498
2629 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation

Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino

Abstract:

This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.

Keywords: corn stalk, natural geotextile, retting, soil erosion

Procedia PDF Downloads 299
2628 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: bioremediation, Green Remediation, phytoremediation, remediation technologies, soil

Procedia PDF Downloads 230
2627 Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force

Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat

Abstract:

Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.

Keywords: flexural strength, durabilty, lime, coir fibers, bending force, ductility

Procedia PDF Downloads 466
2626 Effects of the Slope Embankment Variation on Influence Areas That Causes the Differential Settlement around of Embankment

Authors: Safitri W. Nur, Prathisto Panuntun L. Unggul, M. Ivan Adi Perdana, R. Dary Wira Mahadika

Abstract:

On soft soil areas, high embankment as a preloading needed to improve the bearing capacity of the soil. For sustainable development, the construction of embankment must not disturb the area around of them. So, the influence area must be known before the contractor applied their embankment design. For several cases in Indonesia, the area around of embankment construction is housing resident and other building. So that, the influence area must be identified to avoid the differential settlement occurs on the buildings around of them. Differential settlement causes the building crack. Each building has a limited tolerance for the differential settlement. For concrete buildings, the tolerance is 0,002 – 0,003 m and for steel buildings, the tolerance is 0,006 – 0,008 m. If the differential settlement stands on the range of that value, building crack can be avoided. In fact, the settlement around of embankment is assumed as zero. Because of that, so many problems happen when high embankment applied on soft soil area. This research used the superposition method combined with plaxis analysis to know the influences area around of embankment in some location with the differential characteristic of the soft soil. The undisturbed soil samples take on 55 locations with undisturbed soil samples at some soft soils location in Indonesia. Based on this research, it was concluded that the effects of embankment variation are if more gentle the slope, the influence area will be greater and vice versa. The largest of the influence area with h initial embankment equal to 2 - 6 m with slopes 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 is 32 m from the edge of the embankment.

Keywords: differential settlement, embankment, influence area, slope, soft soil

Procedia PDF Downloads 408
2625 Thermal, Chemical, and Mineralogical Properties of Soil Building Blocks Reinforced with Cement

Authors: Abdelmalek Ammari

Abstract:

This paper represents an experimental study to determine the effect between thermal conductivity of Compressed Earth Block Stabilized (CEBs) by cement and the mineralogical and chemical analyses of soil, all the samples of CEB in the dry state and with different content of cement, the samples made by soil stabilized by Portland Cement. The soil used collected from fez city in Morocco. That determination of the thermal conductivity of CEBs plays an important role when considering its suitability for energy saving insulation. The measurement technique used to determine thermal conductivity is called hot ring method, the thermal conductivity of the tested samples is strongly affected by the quantity of the cement added. The soil of Fez, mainly composed of calcite, quartz, and dolomite, improved the behaviour of the material by the addition of cement. The findings suggest that to manufacture lightweight samples with high thermal insulation properties, it is advisable to use clays that contain quartz. . In addition, quartz has high thermal conductivity.

Keywords: compressed earth blocks, thermal conductivity, mineralogical, chemical, temperature

Procedia PDF Downloads 154
2624 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement

Authors: M. Naji, A. R. Khalim, M. Naji

Abstract:

Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.

Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction

Procedia PDF Downloads 289
2623 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 316
2622 Phytoremediation Potential of Hibiscus Cannabinus L. Grown on Different Soil Cadmium Concentration

Authors: Sarra Arbaoui, Taoufik Bettaieb

Abstract:

Contaminated soils and problems related to them have increasingly become a matter of concern. The most common the contaminants generated by industrial urban emissions and agricultural practices are trace metals). Remediation of trace metals which pollute soils can be carried out using physico-chemical processes. Nevertheless, these techniques damage the soil’s biological activity and require expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains pollutants. The potential of kenaf for phytoremediation on Cd-contaminated soil was investigated. kenaf plants have been grown in pots containing different concentrations of cadmium. The observations made were for biomass production and cadmium content in different organs determinate by atomic emission spectrometry. Cadmium transfer from a contaminated soil to plants and into plant tissues are discussed in terms of the Bioconcentration Factor (BCF) and the Transfer Factor (TF). Results showed that Cd was found in kenaf plants at different levels. Tolerance and accumulation potential and biomass productivity indicated that kenaf could be used in phytoremediation.

Keywords: kenaf, cadmium, phytoremediation, contaminated soil

Procedia PDF Downloads 525
2621 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia

Authors: Zouhaier Nasr, Mohamed Nouri

Abstract:

The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.

Keywords: forest, soil, carbon, climate change, Tunisia

Procedia PDF Downloads 129
2620 Analysis of Reinforced Granular Pile in Soft Soil

Authors: G. Nitesh

Abstract:

Stone column or granular pile is a proven technique to mitigate settlement in soft soil. Granular pile increases both rate of consolidation and stiffness of the ground. In this paper, a method to analyze further reduction in settlement of granular column reinforced with lime pile is presented treating the system as a unit cell and considering one-dimensional compression approach. The core of the granular pile is stiffened with a steel rod or lime column. Influence of a wide range of parameters such as area ratio of granular pile-soft soil, area ratio of lime pile-granular pile, modular ratio of granular pile and modular ratio of lime pile with respect to granular pile on settlement reduction factor, etc. are obtained and presented.

Keywords: lime pile, granular pile, soft soil, settlement

Procedia PDF Downloads 409
2619 The Friction of Oil Contaminated Granular Soils; Experimental Study

Authors: Miron A., Tadmor R., Pinkert S.

Abstract:

Soil contamination is a pressing environmental concern, drawing considerable focus due to its adverse ecological and health outcomes, and the frequent occurrence of contamination incidents in recent years. The interaction between the oil pollutant and the host soil can alter the mechanical properties of the soil in a manner that can crucially affect engineering challenges associated with the stability of soil systems. The geotechnical investigation of contaminated soils has gained momentum since the Gulf War in the 1990s, when a massive amount of oil was spilled into the ocean. Over recent years, various types of soil contaminations have been studied to understand the impact of pollution type, uncovering the mechanical complexity that arises not just from the pollutant type but also from the properties of the host soil and the interplay between them. This complexity is associated with diametrically opposite effects in different soil types. For instance, while certain oils may enhance the frictional properties of cohesive soils, they can reduce the friction in granular soils. This striking difference can be attributed to the different mechanisms at play: physico-chemical interactions predominate in the former case, whereas lubrication effects are more significant in the latter. this study introduces an empirical law designed to quantify the mechanical effect of oil contamination in granular soils, factoring the properties of both the contaminating oil and the host soil. This law is achieved by comprehensive experimental research that spans a wide array of oil types and soils with unique configurations and morphologies. By integrating these diverse data points, our law facilitates accurate predictions of how oil contamination modifies the frictional characteristics of general granular soils.

Keywords: contaminated soils, lubrication, friction, granular media

Procedia PDF Downloads 55
2618 The Effect of the Rain Intensity on the Hydrodynamic Behavior of the Low-Floor ChéLiffe

Authors: Ahmed Abbas

Abstract:

Land degradation in the Lower Cheliff region leads to loss of their fertility, physical and chemical properties by secondary salinization and film forming surface or surface crust. The main factor related to runoff and soil erosion is their susceptibility to crusting caused by the impact of raindrops, which causes the reduction of the filterability of the soil. The present study aims to investigate the hydrodynamic behavior of five types of soil taken from the plain of low Cheliff under simulated rainfall by using two intensities, one moderate, and others correspond to heavy rains at low kinetic energies. Experimental results demonstrate the influence of chemical and mechanical physical properties of soils on their hydrodynamic behavior and the influence of heavy rain on the modality of the reduction in the filterability and the amount of transported sediment.

Keywords: erosion, hydrodynamic behavior, rain simulation, soil

Procedia PDF Downloads 286
2617 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression

Authors: Sito Ismanti, Noriyuki Yasufuku

Abstract:

Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.  

Keywords: bamboo chips, permeability, mechanical properties, triaxial compression

Procedia PDF Downloads 333
2616 Investigation of Suitability of Dredged Wastes for Production of Bricks

Authors: B. Adebayo, A. O. Omotehinse, C. Arum

Abstract:

This study investigates the suitability of dredged samples for the production of bricks. Some geotechnical properties (moisture content, grain size distribution) of dredged samples were also determined using the British Standard. Bricks were produced using appropriate mixes of two dredged wastes. The dredged samples (Oroto dredged samples and Igbokoda dredged samples) have high moisture content of 90.48 % and 37.5 % respectively and both are classified as silty materials. The two dredged samples were mixed in different percentage (1- Oroto dredged sample (DS) 85 % and Igbokoda dredged sample (IS) 15 %, 2-DS 70 % and IS 30 %, 3- DS 55 % and IS 45 %, 4- DS 50 % and IS 50 %, 5- DS 45 % and IS 55 %,6- DS 30 % and IS 70 %, 7- DS 15 % and IS 85 %, 8- Clay 100 %, 9- DS 100 %, 10-IS 100 %) for the production of bricks and were tested for 7 days, 14 days, 21 days and 28 days. Although, the water absorption level of the bricks produced were high (5.635 to 33.4 %), the compressive strength on the 28th day was within the accepted British Standard. The Igbokoda dredge sample is a good material for the production of bricks when mixed with Oroto Dredged sample because the compressive strength of the material is within the accepted limit.

Keywords: bricks, dredged, moisture content, suitability

Procedia PDF Downloads 239
2615 Design and Optimization of Soil Nailing Construction

Authors: Fereshteh Akbari, Farrokh Jalali Mosalam, Ali Hedayatifar, Amirreza Aminjavaheri

Abstract:

The soil nailing is an effective method to stabilize slopes and retaining structures. Consequently, the lateral and vertical displacement of retaining walls are important criteria to evaluate the safety risks of adjacent structures. This paper is devoted to the optimization problems of retaining walls based on ABAQOUS Software. The various parameters such as nail length, orientation, arrangement, horizontal spacing, and bond skin friction, on lateral and vertical displacement of retaining walls are investigated. In order to ensure accuracy, the mobilized shear stress acting around the perimeter of the nail-soil interface is also modeled in ABAQOUS software. The observed trend of results is compared to the previous researches.

Keywords: retaining walls, soil nailing, ABAQOUS software, lateral displacement, vertical displacement

Procedia PDF Downloads 131
2614 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.

Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions

Procedia PDF Downloads 383
2613 Mechanical Activation of a Waste Material Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil

Abstract:

Waste materials or sometimes called by-product materials have been increasingly used as construction material to reduce the usage of cement in different construction projects. In the field of soil stabilisation, waste materials such as pulverised fuel ash (PFA), biomass fly ash (BFA), sewage sludge ash (SSA), etc., have been used since 1960s in last century. In this study, a particular type of a waste material (WM) was used in soft soil stabilisation as a cement replacement, as well as, the effect of mechanical activation, using grinding, on the performance of this WM was also investigated. The WM used in this study is a by-product resulted from the incineration processes between 1000 and 1200oc in domestic power generation plant using a fluidized bed combustion system. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were conducted first to find the optimum content of WM by carrying out Atterberg limits and unconfined compressive strength (UCS) tests on soil samples contained (0, 3, 6, 9, 12, and 15%) of WM by the dry weight of soil. The UCS test was carried out on specimens provided to different curing periods (zero, 7, 14, and 28 days). Moreover, the optimum percentage of the WM was subject to different periods of grinding (10, 20, 30, 40mins) using mortar and pestle grinder to find the effect of grinding and its optimum time by conducting UCS test. The results indicated that the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.10 with 15% of WM. Meanwhile, the results of UCS test indicated that 12% of WM was the optimum and this percentage developed the UCS value from 202kPa to 700kPa for 28 days cured samples. Along with the time of grinding, the results revealed that 10 minutes of grinding was the best for mechanical activation for the WM used in this study.

Keywords: soft soil stabilisation, waste materials, grinding, and unconfined compressive strength

Procedia PDF Downloads 280
2612 Stiffness and Modulus of Subgrade Reaction of the Soft Soil Improved by Stone Columns

Authors: Sudheer Kumar J., Sudhanshu Sharma

Abstract:

Stone columns are extensively used as constructive and environmentally sustainable improvement methods for improving stiffness, modulus of subgrade reaction, and maximum lateral displacement in the multilayer soil system. The advantage of using stone columns in improving the single-layer soft soil as a ground reinforcement element for supporting various structures up to shallow depth is well researched, but the understanding of strengthening the multiplayer soil system for a deeper level requires further studies. In this paper, a series of cases have been conducted to study the behaviour of ordinary stone columns (OSC), geosynthetic encased stone columns (GESC) over various objectives for strengthening multilayer soil system up to deep level. A finite element analyses were carried out using the software package PLAXIS to study further correlate the results. The study aims to find the stiffness of composite soil, modulus of subgrade reaction, which is generally required for designing of various foundations, and also discusses the maximum horizontal displacement location, which is the major failure criteria seen after the installation of stone columns.

Keywords: stone columns, geotextile, finite element method, stiffness, modulus of subgrade reaction, maximum lateral displacement point

Procedia PDF Downloads 136
2611 IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 51
2610 Examining the Role of Soil pH on the Composition and Abundance of Nitrite Oxidising Bacteria

Authors: Mansur Abdulrasheed, Hussein I. Ibrahim, Ahmed F. Umar

Abstract:

Nitrification, the microbial oxidation of ammonia to nitrate (NO3-) via nitrite (NO2-) is a vital process in the biogeochemical nitrogen cycle and is performed by two distinct functional groups; ammonia oxidisers (comprised of ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA)) and nitrite oxidising bacteria. Autotrophic nitrification is said to occur in acidic soils, even though most laboratory cultures of isolated ammonia and nitrite oxidising bacteria fail to grow below neutral pH. Published studies revealed that soil pH is a major driver for determining the distribution and abundance of AOB and AOA. To determine whether distinct populations of nitrite oxidising bacteria within the lineages of Nitrospira and Nitrobacter are adapted to a particular range of pH as observed in ammonia oxidising organisms, the community structure of Nitrospira-like and Nitrobacter-like NOB were examined across a pH gradient (4.5–7.5) by amplifying nitrite oxido-reductase (nxrA) and 16S rRNA genes followed by denaturing gradient gel electrophoresis (DGGE). The community structure of both Nitrospira and Nitrobacter changed with soil pH, with distinct populations observed in acidic and neutral soils. The abundance of Nitrospira-like 16S rRNA and Nitrobacter-like nxrA gene copies contrasted across the pH gradient. Nitrobacter-like nxrA gene abundance decreased with increasing soil pH, whereas Nitrospira-like 16S rRNA gene abundance increased with increasing pH. Findings indicated that abundance and distributions of soil NOB is influence by soil pH.

Keywords: nitrospira, nitrobacter, nitrite-oxidizing bacteria, nitrification, pH, soil

Procedia PDF Downloads 302
2609 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes

Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta

Abstract:

Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.

Keywords: tillage, soil respiration, MBC, fungal-bacterial activity

Procedia PDF Downloads 261
2608 Tillage and Manure Effects on Water Retention and Van Genuchten Parameters in Western Iran

Authors: Azadeh Safadoust, Ali Akbar Mahboubi, Mohammad Reza Mosaddeghi, Bahram Gharabaghi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha⁻¹] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha⁻¹). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha⁻¹). This was due to the increase in the total pore size and continuity.

Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 78