Search results for: diagnostic accuracy
4301 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1424300 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.
Procedia PDF Downloads 4674299 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT
Authors: Jae Ni Jang, Young Uk Kim
Abstract:
Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT
Procedia PDF Downloads 484298 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 1014297 Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test
Authors: Alinka Molnár-Tóth, Tímea Tánczos, Regina Barna, Katalin Jakab, Péter Klivényi
Abstract:
Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase.Keywords: communication disorders, diagnostic toolkit, neurorehabilitation, semantic knowlegde
Procedia PDF Downloads 1034296 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples
Authors: Abu Harera Nadeem, Kingsley Donkor
Abstract:
Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction
Procedia PDF Downloads 1234295 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1264294 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 314293 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts
Authors: Xin-Hua Zhao
Abstract:
In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry
Procedia PDF Downloads 1564292 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent
Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova
Abstract:
Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines
Procedia PDF Downloads 1514291 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 3204290 Clustering the Wheat Seeds Using SOM Artificial Neural Networks
Authors: Salah Ghamari
Abstract:
In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.Keywords: artificial neural networks, clustering, self organizing map, wheat variety
Procedia PDF Downloads 6564289 Thermoluminescent Response of Nanocrystalline BaSO4:Eu to 85 MeV Carbon Beams
Authors: Shaila Bahl, S. P. Lochab, Pratik Kumar
Abstract:
Nanotechnology and nanomaterials have attracted researchers from different fields, especially from the field of luminescence. Recent studies on various luminescent nanomaterials have shown their relevance in dosimetry of ionizing radiations for the measurements of high doses using the Thermoluminescence (TL) technique, where the conventional microcrystalline phosphors saturate. Ion beams have been used for diagnostic and therapeutic purposes due to their favorable profile of dose deposition at the end of the range known as the Bragg peak. While dealing with human beings, doses from these beams need to be measured with great precision and accuracy. Henceforth detailed investigations of suitable thermoluminescent dosimeters (TLD) for dose verification in ion beam irradiation are required. This paper investigates the TL response of nanocrystalline BaSO4 doped with Eu to 85 MeV carbon beam. The synthesis was done using Co-precipitation technique by mixing Barium chloride and ammonium sulphate solutions. To investigate the crystallinity and particle size, analytical techniques such as X-ray diffraction (XRD) and Transmission electron microscopy (TEM) were used which revealed the average particle sizes to 45 nm with orthorhombic structure. Samples in pellet form were irradiated by 85 MeV carbon beam in the fluence range of 1X1010-5X1013. TL glow curves of the irradiated samples show two prominent glow peaks at around 460 K and 495 K. The TL response is linear up to 1X1013 fluence after which saturation was observed. The wider linear TL response of nanocrystalline BaSO4: Eu and low fading make it a superior candidate as a dosimeter to be used for detecting the doses of carbon beam.Keywords: radiation, dosimetry, carbon ions, thermoluminescence
Procedia PDF Downloads 2894288 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1254287 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 944286 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4424285 Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae
Authors: Nastaran Hemmati, Farhad Nikkhahi, Amir Javadi, Sahar Eskandarion, Seyed Mahmuod Amin Marashi
Abstract:
Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine.Keywords: cerebrospinal fluid, meningitis, quantitative polymerase chain reaction, simultaneous detection, diagnosis testing
Procedia PDF Downloads 1164284 Object Trajectory Extraction by Using Mean of Motion Vectors Form Compressed Video Bitstream
Authors: Ching-Ting Hsu, Wei-Hua Ho, Yi-Chun Chang
Abstract:
Video object tracking is one of the popular research topics in computer graphics area. The trajectory can be applied in security, traffic control, even the sports training. The trajectory for sports training can be utilized to analyze the athlete’s performance without traditional sensors. There are many relevant works which utilize mean shift algorithm with background subtraction. This kind of the schemes should select a kernel function which may affect the accuracy and performance. In this paper, we consider the motion information in the pre-coded bitstream. The proposed algorithm extracts the trajectory by composing the motion vectors from the pre-coded bitstream. We gather the motion vectors from the overlap area of the object and calculate mean of the overlapped motion vectors. We implement and simulate our proposed algorithm in H.264 video codec. The performance is better than relevant works and keeps the accuracy of the object trajectory. The experimental results show that the proposed trajectory extraction can extract trajectory form the pre-coded bitstream in high accuracy and achieve higher performance other relevant works.Keywords: H.264, video bitstream, video object tracking, sports training
Procedia PDF Downloads 4284283 Loss of Control Eating as a Key Factor of the Psychological Symptomatology Related to Childhood Obesity
Authors: L. Beltran, S. Solano, T. Lacruz, M. Blanco, M. Rojo, M. Graell, A. R. Sepulveda
Abstract:
Introduction and Objective: Given the difficulties of assessing Binge Eating Disorder during childhood, episodes of Loss of Control (LOC) eating can be a key symptom. The objective is to know the prevalence of food psychopathology depending on the type of evaluation and find out which psychological characteristics differentiate overweight or obese children who present LOC from those who do not. Material and Methods: 170 children from 8 to 12 years of age with overweight or obesity (P > 85) were evaluated through the Primary Care Centers of Madrid. Sociodemographic data and psychological measures were collected through the Kiddie-Schedule for Affective Disorders & Schizophrenia, Present & Lifetime Version (K-SADS-PL) diagnostic interview and self-applied questionnaires: Children's eating attitudes (ChEAT), depressive symptomatology (CDI), anxiety (STAIC), general self-esteem (LAWSEQ), body self-esteem (BES), perceived teasing (POTS) and perfectionism (CAPS). Results: 15.2% of the sample exceeded the ChEAT cut-off point, presenting a risk of pathological eating; 5.88% presented an Eating Disorder through the diagnostic interview (2.35% Binge Eating disorder), and 33.53% had LOC episodes. No relationship was found between the presence of LOC and clinical diagnosis of eating disorders according to DSM-V; however, the group with LOC presented a higher risk of eating psychopathology using the ChEAT (p < .02). Significant differences were found in the group with LOC (p < .02): higher z-BMI, lower body self-esteem, greater anxious symptomatology, greater frequency of teasing towards weight, and greater effect of teasing both towards weight and competitions; compared to their peers without LOC. Conclusion: According to previous studies in samples with overweight children, in this Spanish sample of children with obesity, we found a prevalence of moderate eating disorder and a high presence of LOC episodes, which is related to both eating and general psychopathology. These findings confirm that the exclusion of LOC episodes as a diagnostic criterion can underestimate the presence of eating psychopathology during this developmental stage. According to these results, it is highly recommended to promote school context programs that approach LOC episodes in order to reduce associated symptoms. This study is included in a Project funded by the Ministry of Innovation and Science (PSI2011-23127).Keywords: childhood obesity, eating psychopathology, loss-of-control eating, psychological symptomatology
Procedia PDF Downloads 1064282 Performance Parameters of an Abbreviated Breast MRI Protocol
Authors: Andy Ho
Abstract:
Breast cancer is a common cancer in Australia. Early diagnosis is crucial for improving patient outcomes, as later-stage detection correlates with poorer prognoses. While multiparametric MRI offers superior sensitivity in detecting invasive and high-grade breast cancers compared to conventional mammography, its extended scan duration and high costs limit widespread application. As a result, full protocol MRI screening is typically reserved for patients at elevated risk. Recent advancements in imaging technology have facilitated the development of Abbreviated MRI protocols, which dramatically reduce scan times (<10 minutes compared to >30 minutes for full protocol). The potential for Abbreviated MRI to offer a more time- and cost-efficient alternative has implications for improving patient accessibility, reducing appointment durations, and enhancing compliance—especially relevant for individuals requiring regular annual screening over several decades. The purpose of this study is to assess the diagnostic efficacy of Abbreviated MRI for breast cancer screening among high-risk patients at the Royal Prince Alfred Hospital (RPA). This study aims to determine the sensitivity, specificity, and inter-reader variability of Abbreviated MRI protocols when interpreted by subspecialty-trained Breast Radiologists. A systematic review of the RPA’s electronic Picture Archive and Communication System identified high-risk patients, defined by Australian ‘Medicare Benefits Schedule’ criteria, who underwent Breast MRI from 2021 to 2022. Eligible participants included asymptomatic patients under 50 years old referred by the High-Risk Clinic due to a high-risk genetic profile or relevant familial history. The MRIs were anonymized, randomized, and interpreted by four Breast Radiologists, each independently completing standardized proforma evaluations. Radiological findings were compared against histopathology as the gold standard or follow-up imaging if biopsies were unavailable. Statistical metrics, including sensitivity, specificity, and inter-reader variability, were assessed. The Fleiss-Kappa analysis demonstrated a fair inter-reader agreement (kappa = 0.25; 95% CI: 0.19–0.32; p < 0.0001). The sensitivity for detecting malignancies was 0.75, with a specificity of 0.84. These findings underline the potential of Abbreviated MRI as a reliable screening tool for malignancies with significant specificity, though reduced sensitivity highlights the importance of robust radiologist training and consistent evaluation standards. Abbreviated MRI protocols exhibit promise as a viable screening option for high-risk patients, combining reduced scan times and acceptable diagnostic accuracy. Further work to refine interpretation practices and optimize training is essential to maximize the protocol’s utility in routine clinical screening and facilitate broader accessibility.Keywords: abbreviated, breast, cancer, MRI
Procedia PDF Downloads 124281 Role of Special Training Centers (STC) in Right to Education Act Challenges And Remedies
Authors: Anshu Radha Aggarwal
Abstract:
As per the Right to Education Act (RTE), 2009, every child in the age group of 6-14 years shall be admitted in a neighborhood school. All the Out of School Children identified have to be enrolled / mainstreamed in to age appropriate class and there-after be provided special training. This paper addresses issues emerging from provisions in the RTE Act that specifically refer to the enrolment of out-of school children into age appropriate classes and the requirement to provide special trainings that will enable this to take place. In the context of RTE Act, the Out-of-School Children are first enrolled in the formal school and then they are provided with Special Training through NRSTCs (Long Term / Short term basis). These centers are functioning in formal school campus itself. This paper specifies the role of special training centers (STC). It presents a re-envisioning of assessment that recognizes two principal functions of assessment, assessment for learning and assessment of learning, instead of the more familiar categories of formative, diagnostic, summative, and evaluative assessment. The use of these two functions of assessment highlights and emphasizes the role of special training centers (STC) to assess their level for giving them appropriate special training and to evaluate their improvement in learning level. Challenge of problem faced by teachers to do diagnostic assessment, including its place in the sequence of assessment procedures appropriate in identifying and addressing individual children’s learning difficulties are solved by special training centers (STC). It is important that assessment is used to identify children with learning difficulties at the earliest possible stage so that appropriate support and intervention can be put in place. So appropriate challenges with tools are presented here for their assessment at entry level and at completion level of primary children by special training centers (STC).Keywords: right to education, assessment, challenges, out of school children
Procedia PDF Downloads 4614280 Production of Recombinant VP2 Protein of Canine Parvovirus Type 2c Using Baculovirus Expression System
Authors: Jae Young Song, In-Ohk Ouh, Seyeon Park, Byeong Sul Kang, Soo Dong Cho, In-Soo Cho
Abstract:
Canine parvovirus (CPV) is a major pathogen of diarrhea disease in dogs. CPV type 2 has three of antigenic variants such as 2a, 2b, and 2c. CPV constructs a small non-enveloped, icosahedral capsid that contains single-stranded DNA. It has capsids that two largely overlapping virion proteins (VP), VP1 (82 kDa), and VP2 (65 kDa). Baculoviruses are insect pathogens that regulate insect populations in nature and are being successfully used to control insect pests. The proteins produced in the baculovirus-expression system are used for instance for functional studies, vaccine preparations, or diagnostics. The vaccines produced by baculovirus-expression system showed elicitation of antibodies. The recombinant baculovirus infected SF9 cells showed broken shape. The recombinant VP2 proteins from cell pellet or supernatant were confirmed by western blotting. The result showed that the recombinant VP2 protein bands were appeared at 65 kDa molecular weight in both cell pellet and supernatant of infected SF9 cell. These results indicated that the recombinant baculovirus infected SF9 cell express the recombinant VP2 protein successfully. In addition, the expressed recombinant VP2 protein is secreted from cell to supernatant. The baculovirus expression system can be used to produce the VP2 protein of CPV 2c. In addition, the secretion property of the expression of VP2 protein may decrease the cost of production, because it can be skipped the cell breaking step. The produced VP2 protein could be used for vaccine and the agent of diagnostic tests. This study provides the foundation of the production of CPV 2c vaccine and the diagnostic agent.Keywords: baculovirus, canine parvovirus 2c, dog, Korea
Procedia PDF Downloads 1514279 One Decade Later: The Conundrum of Unrecognized Asherman Syndrome
Authors: Maria Francesca Lavadia-Gumabao, Mary Antoinette Salvamante-Torallo
Abstract:
Introduction: The fibrous intrauterine adhesions forming inside the uterus and/or cervix in Asherman syndrome can obstruct the internal cervical orifice and may present as a case of outflow tract obstruction. Asherman syndrome is often overlooked since it has no specific presentation and is undetectable by routine physical examinations or diagnostic procedures such as an ultrasound. This paper highlights the delay and elusive diagnosis of Asherman syndrome which negatively impacted the patient’s fertility and quality of life. Case presentation: A 33-year-old woman (gravida 3, para 3) who presented with secondary amenorrhea for thirteen years associated with cyclic pelvic pain and secondary infertility sought a consultation at our institution for evaluation and specialty management. The patient had no other well-established risk factors for Asherman syndrome aside from pregnancy. For more than a decade, she delayed seeking medical care. At presentation, history taking, physical examination, and ultrasound were not helpful in identifying the cause of outflow tract obstruction. Diagnostic hysteroscopy was then performed, during which extensive scarring and fibrosis completely obscured the internal cervical orifice were observed, consistent with the diagnosis of Asherman syndrome (Grade 5B). The patient then underwent ultrasound guided hysteroscopy outflow tract dilatation and responded well to the treatment as she had her menstrual period a month after the procedure and no longer had cyclic pelvic pain with a repeat ultrasound finding of an unremarkable uterus. The hispathology result of the tissues retrieved revealed myometrial fragments with associated old hemorrhage benign endometrial stromal tissues, which failed to show endometrial glands. Conclusion: The delay and elusive diagnosis of Asherman syndrome can be brought about by poor health seeking behavior of patients and difficulty in detecting this condition by routine physical examinations or diagnostic procedures such as an ultrasound. It is, therefore, necessary to include Asherman syndrome in the differential diagnosis of secondary amenorrhea and secondary infertility. With expertise in hysteroscopy, early diagnosis, proper classification in the advent of hysteroscopy, and optimal management can improve patient outcomes.Keywords: Asherman syndrome, outflow tract obstruction, secondary amenorrhea, infertility, hysteroscopy
Procedia PDF Downloads 94278 Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy
Authors: K. Khaerunnisa, D. Ryangga, S. A. Pawiro
Abstract:
Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers.Keywords: Callibration Methods, Film Dosimetry EBT3, Flat Bad Scanner, Densitomete, Spectrophotometer
Procedia PDF Downloads 1354277 Impact of External Temperature on the Speleothem Growth in the Moravian Karst
Authors: Frantisek Odvarka
Abstract:
Based on the data from the Moravian Karst, the influence of the calcite speleothem growth by selected meteorological factors was evaluated. External temperature was determined as one of the main factors influencing speleothem growth in Moravian Karst. This factor significantly influences the CO₂ concentration in soil/epikarst, and cave atmosphere in the Moravian Karst and significantly contributes to the changes in the CO₂ partial pressure differences between soil/epikarst and cave atmosphere in Moravian Karst, which determines the drip water supersaturation with respect to the calcite and quantity of precipitated calcite in the Moravian Karst cave environment. External air temperatures and cave air temperatures were measured using a COMET S3120 data logger, which can measure temperatures in the range from -30 to +80 °C with an accuracy of ± 0.4 °C. CO₂ concentrations in the cave and soils were measured with a FT A600 CO₂H Ahlborn probe (value range 0 ppmv to 10,000 ppmv, accuracy 1 ppmv), which was connected to the data logger ALMEMO 2290-4, V5 Ahlborn. The soil temperature was measured with a FHA646E1 Ahlborn probe (temperature range -20 to 70 °C, accuracy ± 0.4 °C) connected to an ALMEMO 2290-4 V5 Ahlborn data logger. The airflow velocities into and out of the cave were monitored by a FVA395 TH4 Thermo anemometer (speed range from 0.05 to 2 m s⁻¹, accuracy ± 0.04 m s⁻¹), which was connected to the ALMEMO 2590-4 V5 Ahlborn data logger for recording. The flow was measured in the lower and upper entrance of the Imperial Cave. The data were analyzed in MS Office Excel 2019 and PHREEQC.Keywords: speleothem growth, carbon dioxide partial pressure, Moravian Karst, external temperature
Procedia PDF Downloads 1444276 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces
Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi
Abstract:
Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.Keywords: culture, pathogenic leptospiras, PCR, real time PCR
Procedia PDF Downloads 854275 Prevalence and Diagnostic Evaluation of Schistosomiasis in School-Going Children in Nelson Mandela Bay Municipality: Insights from Urinalysis and Point-of-Care Testing
Authors: Maryline Vere, Wilma ten Ham-Baloyi, Lucy Ochola, Opeoluwa Oyedele, Lindsey Beyleveld, Siphokazi Tili, Takafira Mduluza, Paula E. Melariri
Abstract:
Schistosomiasis, caused by Schistosoma (S.) haematobium and Schistosoma (S.) mansoni parasites poses a significant public health challenge in low-income regions. Diagnosis typically relies on identifying specific urine biomarkers such as haematuria, protein, and leukocytes for S. haematobium, while the Point-of-Care Circulating Cathodic Antigen (POC-CCA) assay is employed for detecting S. mansoni. Urinalysis and the POC-CCA assay are favoured for their rapid, non-invasive nature and cost-effectiveness. However, traditional diagnostic methods such as Kato-Katz and urine filtration lack sensitivity in low-transmission areas, which can lead to underreporting of cases and hinder effective disease control efforts. Therefore, in this study, urinalysis and the POC-CCA assay was utilised to diagnose schistosomiasis effectively among school-going children in Nelson Mandela Bay Municipality. This was a cross-sectional study with a total of 759 children, aged 5 to 14 years, who provided urine samples. Urinalysis was performed using urinary dipstick tests, which measure multiple parameters, including haematuria, protein, leukocytes, bilirubin, urobilinogen, ketones, pH, specific gravity and other biomarkers. Urinalysis was performed by dipping the strip into the urine sample and observing colour changes on specific reagent pads. The POC-CCA test was conducted by applying a drop of urine onto a cassette containing CCA-specific antibodies, and the presence of a visible test line indicated a positive result for S. mansoni infection. Descriptive statistics were used to summarize urine parameters, and Pearson correlation coefficients (r) were calculated to analyze associations among urine parameters using R software (version 4.3.1). Among the 759 children, the prevalence of S. haematobium using haematuria as a diagnostic marker was 33.6%. Additionally, leukocytes were detected in 21.3% of the samples, and protein was present in 15%. The prevalence of positive POC-CCA test results for S. mansoni was 3.7%. Urine parameters exhibited low to moderate associations, suggesting complex interrelationships. For instance, specific gravity and pH showed a negative correlation (r = -0.37), indicating that higher specific gravity was associated with lower pH. Weak correlations were observed between haematuria and pH (r = -0.10), bilirubin and ketones (r = 0.14), protein and bilirubin (r = 0.13), and urobilinogen and pH (r = 0.12). A mild positive correlation was found between leukocytes and blood (r = 0.23), reflecting some association between these inflammation markers. In conclusion, the study identified a significant prevalence of schistosomiasis among school-going children in Nelson Mandela Bay Municipality, with S. haematobium detected through haematuria and S. mansoni identified using the POC-CCA assay. The detection of leukocytes and protein in urine samples serves as critical biomarkers for schistosomiasis infections, reinforcing the presence of schistosomiasis in the study area when considered alongside haematuria. These urine parameters are indicative of inflammatory responses associated with schistosomiasis, underscoring the necessity for effective diagnostic methodologies. Such findings highlight the importance of comprehensive diagnostic assessments to accurately identify and monitor schistosomiasis prevalence and its associated health impacts. The significant burden of schistosomiasis in this population highlights the urgent need to develop targeted control interventions to effectively reduce its prevalence in the study area.Keywords: schistosomiasis, urinalysis, haematuria, POC-CCA
Procedia PDF Downloads 204274 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 1224273 Fluorometric Aptasensor: Evaluation of Stability and Comparison to Standard Enzyme-Linked Immunosorbent Assay
Authors: J. Carlos Kuri, Varun Vij, Raymond J. Turner, Orly Yadid-Pecht
Abstract:
Celiac disease (CD) is an immune system disorder that is triggered by ingesting gluten. As a gluten-free (GF) diet has become a concern of many people for health reasons, a gold standard had to be nominated. Enzyme-linked immunosorbent assay (ELISA) has taken the seat of this role. However, multiple limitations were discovered, and with that, the desire for an alternative method now exists. Nucleic acid-based aptamers have become of great interest due to their selectivity, specificity, simplicity, and rapid-testing advantages. However, fluorescence-based aptasensors have been tagged as unstable, but lifespan details are rarely stated. In this work, the lifespan stability of a fluorescence-based aptasensor is shown over an 8-week-long study displaying the accuracy of the sensor and false negatives. This study follows 22 different samples, including GF and gluten-rich (GR) and soy sauce products, off-the-shelf products, and reference material from laboratories, giving a total of 836 tests. The analysis shows an accuracy of correctly classifying GF and GR products of 96.30% and 100%, respectively when the protocol is augmented with molecular sieves. The overall accuracy remains around 94% within the first four weeks and then decays to 63%.Keywords: aptasensor, PEG, rGO, FAM, RM, ELISA
Procedia PDF Downloads 1244272 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects
Authors: Gehad S. Kaseb, Mona F. Ahmed
Abstract:
Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.Keywords: Arabic, classification, sentiment analysis, tweets
Procedia PDF Downloads 149